Short tool service life is always a major concern when milling hard materials, such as Ni-based superalloy. In the current research of tool life optimization in multi-axis machining of freeform surfaces, the focus is mostly on choosing suitable cutting parameters and better application of coolant. In this paper, aiming at averaging the tool wear on the entire cutting edge and hence prolonging the tool service life, we report a study on how to generate a multilayer toolpath with a varying tool lead angle for multi-axis milling of an arbitrary freeform surface from an initial raw stock. The generated toolpath is guaranteed to be free of chatter, which is well known for its detrimental effect on the cutting edge. In this study, we first experimentally construct the chatter stability lobe diagram, which reveals the relationship between the lead angle and the cutting depth. With the chatter stability lobe diagram as the major constraint, we then generate the machining toolpath by selecting a proper pair of the best lead angle and cutting depth along the toolpath. While the proposed algorithm currently is restricted to the iso-planar type of toolpath, it can be adapted to other types of milling. The physical cutting experiments performed by us have convincingly confirmed the advantage of the proposed machining strategy as compared to the conventional constant lead angle and constant cutting depth strategy—in our tests the maximum wear on the cutting edge is reduced by as much as 39%.

References

References
1.
Elber
,
G.
, and
Cohen
,
E.
,
1994
, “
Tool Path Generation for Freeform Surface Models
,”
Comput.-Aided Des.
,
26
(
6
), pp.
490
496
.
2.
He
,
W.
,
Lei
,
M.
, and
Bin
,
H.
,
2009
, “
Iso-Parametric CNC Tool Path Optimization Based on Adaptive Grid Generation
,”
Int. J. Adv. Manuf. Technol.
,
41
(
5–6
), pp.
538
548
.
3.
Suh
,
Y. S.
, and
Lee
,
K.
,
1990
, “
NC Milling Tool Path Generation for Arbitrary Pockets Defined by Sculptured Surfaces
,”
Comput. Des.
,
22
(
5
), pp.
273
284
.
4.
Ding
,
S.
,
Mannan
,
M. A.
,
Poo
,
A. N.
,
Yang
,
D. C. H.
, and
Han
,
Z.
,
2003
, “
Adaptive Iso-Planar Tool Path Generation for Machining of Free-Form Surfaces
,”
Comput. Aided Des.
,
35
, pp.
141
153
.
5.
Suresh
,
K.
, and
Yang
,
D. C. H.
,
1994
, “
Constant Scallop-Height Machining of Free-Form Surfaces
,”
ASME J. Eng. Ind.
,
116
(
2
), pp.
253
259
.
6.
Han
,
Z.
, and
Yang
,
D. C. H.
,
1999
, “
Iso-Phote Based Tool-Path Generation for Machining Free-Form Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), p.
656
.
7.
Kayhan
,
M.
, and
Budak
,
E.
,
2009
, “
An Experimental Investigation of Chatter Effects on Tool Life
,”
Proc. Inst. Mech. Eng., Part B
,
223
(
11
), pp.
1455
1463
.
8.
Tobias
,
S. A.
, and
Fiswick
,
W.
,
1958
, “
Theory of Regenerative Machine Tool Chatter
,”
The Engineer
,
205
(
7
), pp.
199
203
.
9.
Tlusty
,
J.
, and
Polacek
,
M.
,
1963
, “
The Stability of Machine Tools Against Self-Excited Vibrations in Machining
,” ASME International Research in Production Engineering Conference, Pittsburg, PA, Sept. 9–12, pp. 465–474.
10.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
.
11.
Merritt
,
H. E.
,
1965
, “
Theory of Self-Excited Machine-Tool Chatter: Contribution to Machine-Tool Chatter Research—1
,”
ASME J. Eng. Ind.
,
87
(
4
), p.
447
.
12.
Minis
,
I.
,
Yanushevsky
,
R.
,
Tembo
,
A.
, and
Hocken
,
R.
,
1990
, “
Analysis of Linear and Nonlinear Chatter in Milling
,”
CIRP Ann.-Manuf. Technol.
,
39
(
1
), pp.
459
462
.
13.
Budak
,
E.
, and
Altintaş
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
1
), p.
22
.
14.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part II: Application of the General Formulation to Common Milling Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
1
), pp.
31
36
.
15.
Altintas
,
Y.
,
2001
, “
Analytical Prediction of Three Dimensional Chatter Stability in Milling
,”
JSME Int. J. Ser. C
,
44
(
3
), pp.
717
723
.
16.
Ozturk
,
E.
, and
Budak
,
E.
,
2010
, “
Dynamics and Stability of Five-Axis Ball-End Milling
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021003
.
17.
Altintas
,
Y.
,
Eynian
,
M.
, and
Onozuka
,
H.
,
2008
, “
Identification of Dynamic Cutting Force Coefficients and Chatter Stability With Process Damping
,”
CIRP Ann.-Manuf. Technol.
,
57
(
1
), pp.
371
374
.
18.
Budak
,
E.
, and
Tunc
,
L. T.
,
2010
, “
Identification and Modeling of Process Damping in Turning and Milling Using a New Approach
,”
CIRP Ann.-Manuf. Technol.
,
59
(
1
), pp.
403
408
.
19.
Insperger
,
T.
, and
Muñoa
,
J.
,
2006
, “
Unstable Islands in the Stability Chart of Milling Processes Due to the Helix Angle
,”
CIRP
Second International Conference on High Performance Cutting, Vancouver, Canada, June 10–11, pp. 12–13.https://www.researchgate.net/publication/255606687_Unstable_Islands_in_the_Stability_Chart_of_Milling_Processes_Due_to_the_Helix_Angle
20.
Patel
,
B. R.
,
Mann
,
B. P.
, and
Young
,
K. A.
,
2008
, “
Uncharted Islands of Chatter Instability in Milling
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
124
134
.
21.
Quintana
,
G.
,
Ciurana
,
J.
, and
Teixidor
,
D.
,
2008
, “
A New Experimental Methodology for Identification of Stability Lobes Diagram in Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
48
(
15
), pp.
1637
1645
.
22.
Astakhov
,
V. P.
,
2007
, “
Effects of the Cutting Feed, Depth of Cut, and Workpiece (Bore) Diameter on the Tool Wear Rate
,”
Int. J. Adv. Manuf. Technol.
,
34
(
7–8
), pp.
631
640
.
23.
Childs
,
T.
,
2000
,
Metal Machining: Theory and Applications
,
Butterworth-Heinemann
,
Oxford, UK
.
24.
Gorczyca
,
F.
,
1987
,
Application of Metal Cutting Theory
,
Industrial Press
,
New York
.
25.
Balazinski
,
M.
,
Songmene
,
V.
, and
Kops
,
L.
,
1995
, “
Improvement of Tool Life Through Variable Feed Milling of Inconel 600
,”
CIRP Ann.
,
44
(
1
), pp.
55
58
.
26.
Krain
,
H. R.
,
Sharman
,
A. R. C.
, and
Ridgway
,
K.
,
2007
, “
Optimisation of Tool Life and Productivity When End Milling Inconel 718TM
,”
J. Mater. Process. Technol.
,
189
(
1–3
), pp.
153
161
.
27.
Ghosh
,
N.
,
Ravi
,
Y. B.
,
Patra
,
A.
,
Mukhopadhyay
,
S.
,
Paul
,
S.
,
Mohanty
,
A. R.
, and
Chattopadhyay
,
A. B.
,
2007
, “
Estimation of Tool Wear During CNC Milling Using Neural Network-Based Sensor Fusion
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
466
479
.
28.
Chien
,
W. T.
, and
Tsai
,
C. S.
,
2003
, “
The Investigation on the Prediction of Tool Wear and the Determination of Optimum Cutting Conditions in Machining 17-4PH Stainless Steel
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
340
345
.
29.
Özel
,
T.
, and
Karpat
,
Y.
,
2005
, “
Predictive Modeling of Surface Roughness and Tool Wear in Hard Turning Using Regression and Neural Networks
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
467
479
.
30.
Yen
,
Y. C.
,
Söhner
,
J.
,
Lilly
,
B.
, and
Altan
,
T.
,
2004
, “
Estimation of Tool Wear in Orthogonal Cutting Using the Finite Element Analysis
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
82
91
.
31.
Uros
,
Z.
,
Franc
,
C.
, and
Edi
,
K.
,
2009
, “
Adaptive Network Based Inference System for Estimation of Flank Wear in End-Milling
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1504
1511
.
32.
Ji
,
W.
,
Shi
,
J.
,
Liu
,
X.
,
Wang
,
L.
, and
Liang
,
S. Y.
,
2017
, “
A Novel Approach of Tool Wear Evaluation
,”
ASME J. Manuf. Sci. Eng.
,
139
(9), p.
091015
.
33.
Nouari
,
M.
,
List
,
G.
,
Girot
,
F.
, and
Coupard
,
D.
,
2003
, “
Experimental Analysis and Optimisation of Tool Wear in Dry Machining of Aluminium Alloys
,”
Wear
,
255
(
7–12
), pp.
1359
1368
.
34.
Mandal
,
N.
,
Doloi
,
B.
,
Mondal
,
B.
, and
Das
,
R.
,
2011
, “
Optimization of Flank Wear Using Zirconia Toughened Alumina (ZTA) Cutting Tool: Taguchi Method and Regression Analysis
,”
Meas. J. Int. Meas. Confed.
,
44
(
10
), pp.
2149
2155
.
35.
Choudhury
,
S. K.
, and
Appa Rao
,
I. V. K.
,
1999
, “
Optimization of Cutting Parameters for Maximizing Tool Life
,”
Int. J. Mach. Tools Manuf.
,
39
(
2
), pp.
343
353
.
36.
Luo
,
M.
,
Luo
,
H.
,
Zhang
,
D.
, and
Tang
,
K.
,
2017
, “
Improving Tool Life in Multi-Axis Milling of Ni-Based Superalloy With Ball-End Cutter Based on the Active Cutting Edge Shift Strategy
,”
J. Mater. Process. Technol.
,
252
, pp.
105
115
.
37.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge, UK
.
38.
Engin
,
S.
, and
Altintas
,
Y.
,
2001
, “
Mechanics and Dynamics of General Milling Cutters
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2195
2212
.
You do not currently have access to this content.