A hybrid modeling approach based on computational fluid dynamics (CFD) and finite element method (FEM) is presented to simulate and study cryogenic machining (CM) of Ti–6Al–4V alloy. CFD analysis was carried out to study the characteristics of the fluid flow and heat transfer process of liquid nitrogen (LN2) jet used as a coolant in turning operation. The velocity, turbulence, gas volume fraction, and temperature of the impingement jet were investigated. Based on the analysis results, the coefficient of heat transfer (CHT) between the LN2 and cutting tool/insert was obtained and used in the FEM analysis to model the heat transfer process between the LN2 and the tool/chip/workpiece. A three-dimensional (3D) finite element (FE) model was developed to simulate a real CM operation. CM tests were carried out to validate the 3D FE model by comparing cutting forces and chip temperature. To evaluate LN2 cooling effect on tool temperature and tool wear, a two-dimensional (2D) FE model was developed for steady-state thermal analysis of cryogenic and dry machining. Based on the predicted temperatures, the tool wear was estimated, showing that LN2 cooling can significantly improve tool life.

References

References
1.
Jawahir
,
I. S.
,
Attia
,
H.
,
Biermann
,
D.
,
Duflou
,
J.
,
Klocke
,
F.
,
Meyer
,
D.
,
Newman
,
S. T.
,
Pusavec
,
F.
,
Putz
,
M.
,
Rech
,
J.
,
Schulze
,
V.
, and
Umbrello
,
D.
,
2016
, “
Cryogenic Manufacturing Processes
,”
CIRP Ann. Manuf. Technol.
,
65
(
2
), pp.
713
736
.
2.
Jayal
,
A. D.
,
Badurdeen
,
F.
,
Dillon
,
O. W.
, Jr.
, and
Jawahir
,
I. S.
,
2010
, “
Sustainable Manufacturing: Modeling and Optimization Challenges at the Product, Process and System Levels
,”
CIRP J. Manuf. Sci. Eng.
,
2
(
3
), pp.
144
152
.
3.
Hong
,
S. Y.
,
1999
, “
Economical and Ecological Cryogenic Machining
,”
ASME J. Manuf. Sci. Eng.
,
123
(
2
), pp.
331
338
.
4.
Konig
,
W.
,
1979
, “
Applied Research on the Machinability of Titanium & Its Alloys
,”
AGARD Conference Advanced Fabrication Processes (CP-256)
,
Florence, Italy
, pp.
1
10
.
5.
Klocke
,
F.
,
Krämer
,
A.
,
Sangermann
,
H.
, and
Lung
,
D.
,
2012
, “
Thermo-Mechanical Tool Load During High Performance Cutting of Hard-to-Cut Materials
,”
Procedia CIRP
,
1
, pp.
295
300
.
6.
Venugopal
,
K. A.
,
Paul
,
S.
, and
Chattopadhyay
,
A. B.
,
2007
, “
Tool Wear in Cryogenic Turning of Ti–6Al–4V Alloy
,”
Cryogenics
,
47
(
1
), pp.
12
18
.
7.
Hong
,
S. Y.
,
Ding
,
Y.
, and
Jeong
,
W. C.
,
2001
, “
Friction and Cutting Forces in Cryogenic Machining of Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2271
2285
.
8.
Dhananchezian
,
M.
,
Kumar
,
M.
, and
Pradeep
,
A.
,
2009
, “
Experimental Investigation of Cryogenic Cooling by Liquid Nitrogen in the Orthogonal Machining Process
,”
Int. J. Recent Trends Eng.
,
1
(
5
), pp.
55
59
.https://www.researchgate.net/publication/237400310
9.
Bermingham
,
M. J.
,
Kirsch
,
J.
,
Sun
,
S.
,
Palanisamy
,
S.
, and
Dargusch
,
M. S.
,
2011
, “
New Observations on Tool Life, Cutting Forces and Chip Morphology in Cryogenic Machining Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
500
511
.
10.
Ke
,
Y. L.
,
Dong, H. Y.
,
Gang, L. I. U.
, and
Zhang, M.
,
2009
, “
Use of Nitrogen Gas in High-Speed Milling of Ti–6Al–4V
,”
Trans. Nonferrous Met. Soc. China
,
19
(
3
), pp.
530
534
.
11.
Strano
,
M.
,
Chiappini
,
E.
,
Tirelli
,
S.
,
Albertelli
,
P.
, and
Monno
,
M.
,
2013
, “
Comparison of Ti6Al4V Machining Forces and Tool Life for Cryogenic Versus Conventional Cooling
,”
Proc. Inst. Mech. Eng., Part B
,
227
(
9
), pp.
1403
1408
.
12.
Ansys
,
2013
,
ANSYS Fluent Theory Guide
,
ANSYS
,
Canonsburg, PA
.
13.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
1st ed.
,
Cambridge University Press
,
Cambridge, UK
.
14.
Hong
,
S. Y.
, and
Ding
,
Y.
,
2001
, “
Cooling Approaches and Cutting Temperatures in Cryogenic Machining of Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
41
, pp.
1417
1437
.
15.
Haustein
,
H. D.
,
Tebrügge
,
G.
,
Rohlfs
,
W.
, and
Kneer
,
R.
,
2012
, “
Local Heat Transfer Coefficient Measurement Through a Visibly-Transparent Heater Under Jet-Impingement Cooling
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6410
6424
.
16.
SFTC
,
2014
,
DEFORM V10.2 Integrated 2D3D System Manual
,
Scientific Technologies Corporation
,
Columbus, OH
.
17.
Carroll
,
J. T.
, and
Strenkowski
,
J. S.
,
1988
, “
Finite Element Models of Orthogonal Cutting With Application to Single Point Diamond Turning
,”
Int. J. Mech. Sci.
,
30
(
12
), pp.
899
920
.
18.
Shi
,
B.
, and
Attia
,
H.
,
2009
, “
Modeling the Thermal and Tribological Processes at the Tool-Chip Interface in Machining
,”
Mach. Sci. Technol.
,
13
(
2
), pp.
210
226
.
19.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rates and High Temperatures
,”
Seventh International Symposium on Ballistics
,
The Hague, The Netherlands
,
Apr. 19–21
, pp.
541
547
.
20.
Shi
,
B.
,
Attia
,
H.
, and
Tounsi
,
N.
,
2010
, “
Identification of Material Constitutive Laws for Machining—Part I: An Analytical Model Describing the Stress, the Strain, the Strain Rate, and the Temperature Fields in the Primary Shear Zone in Orthogonal Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051008
.
21.
Shi
,
B.
,
Attia
,
H.
, and
Tounsi
,
N.
,
2010
, “
Identification of Material Constitutive Laws for Machining—Part II: Generation of the Constitutive Data and Validation of the Constitutive Law
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051009
.
22.
Shi
,
B.
, and
Attia
,
H.
,
2010
, “
Evaluation Criteria of the Constitutive Law Formulation for the Metal Cutting Process
,”
Proc. Inst. Mech. Eng., Part B
,
224
(
9
), pp.
1313
1328
.
23.
Courbon
,
C.
,
Pusavec
,
F.
,
Dumont
,
F.
,
Rech
,
J.
, and
Kopac
,
J.
,
2013
, “
Tribological Behavior of Ti–6Al4V and Inconel 718 Under Dry and Cryogenic Conditions—Applications to the Context of Machining With Carbide Tools
,”
Tribol. Int.
,
66
, pp.
72
82
.
24.
Usui
,
E.
,
Hirota
,
A.
, and
Masuko
,
M.
,
1978
, “
Analytical Prediction of Three Dimensional Cutting Process—Part 3: Cutting Temperature and Crater Wear of Carbide Tool
,”
Trans. ASME
,
100
(2), pp.
222
228
.
25.
Kitagawa
,
T.
,
Maekawa
,
K.
,
Shirakashi
,
T.
, and
Usui
,
E.
,
1988
, “
Analytical Prediction of Flank Wear of Carbide Tools in Turning Plain Carbon Steels—Part 1: Characteristic Equation of Flank Wear
,”
Bull. Jpn. Soc. Precis. Eng.
,
22
(
4
), pp.
263
269
.https://www.researchgate.net/publication/286911371
26.
Kitagawa
,
T.
,
Maekawa
,
K.
,
Shirakashi
,
T.
, and
Usui
,
E.
,
1989
, “
Analytical Prediction of Flank Wear of Carbide Tools in Turning Plain Carbon Steels—Part 2: Prediction of Flank Wear
,”
Bull. Jpn. Soc. Precis. Eng.
,
23
(
2
), pp.
126
134
.https://www.researchgate.net/publication/287356602
27.
Lorentzon
,
J.
,
2008
, “
Modelling Tool Wear in Cemented-Carbide Machining Alloy 718
,”
Int. J. Mach. Tools Manuf.
,
48
(
10
), pp.
1072
1080
.
You do not currently have access to this content.