Powder-based additive manufacturing technologies are developing rapidly. To assess their applicability, comparison of performance and environmental impacts between additive technologies and conventional techniques must be performed. Toyota manufactures over two million aluminum four-cylinder engines in the U.S. each year via die casting. The dies used in this process are traditionally repaired via tungsten inert gas (TIG) welding and only last an average of 20.8% of the number of cycles of the original die life before another repair is needed. A hybrid repair process involving machining away the damaged areas and then rebuilding them additively via powder-blown directed energy deposition (DED) has been developed. The die repaired via DED resulted in the same life as the original die. The use of DED repair eliminated the need for emergency repairs and nonscheduled downtime on the line because the DED repaired dies last for as many cycles as the original die before another repair is needed. Life cycle analyses were conducted comparing the traditional welding repair process to the DED repair process. The results show that the DED repair process results in significantly less damage to the assessed impact categories except for ionizing radiation. Therefore, it can be concluded that the DED repair process could lessen most environmental impacts compared to traditional welding repair. Further work toward increasing energy and material efficiencies of the method could yield further reductions in environmental impacts.

References

1.
Jhavar
,
S.
,
Paul
,
C.
, and
Jain
,
N.
,
2013
, “
Causes of Failure and Repairing Options for Dies and Molds: A Review
,”
Eng. Failure Anal.
,
34
, pp.
519
535
.
2.
Wang
,
J.
,
Prakash
,
S.
,
Joshi
,
Y.
, and
Liou
,
F.
,
2002
, “
Laser Aided Part Repair—A Review
,”
13th Annual Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 5–7
, pp.
57
64
.
3.
Graf
,
B.
,
Ammer
,
S.
,
Gumenyuk
,
A.
, and
Rethmeier
,
M.
,
2013
, “
Design of Experiments for Laser Metal Deposition in Maintenance, Repair and Overhaul Applications
,”
Procedia CIRP
,
11
, pp.
245
248
.
4.
Bennett
,
J.
,
Dudas
,
R.
,
Cao
,
J.
,
Ehmann
,
K.
, and
Hyatt
,
G.
,
2016
, “
Control of Heating and Cooling for Direct Laser Deposition Repair of Cast Iron Components
,”
International Symposium on Flexible Automation
(
ISFA
),
Cleveland, OH
Aug. 1–3
, pp.
229
236
.
5.
Graf
,
B.
,
Gumenyuk
,
A.
, and
Rethmeier
,
M.
,
2012
, “
Laser Metal Deposition as Repair Technology for Stainless Steel and Titanium Alloys
,”
Phys. Procedia
,
39
, pp.
376
381
.
6.
Pinkerton
,
A.
,
Wang
,
W.
, and
Li
,
L.
,
2008
, “
Component Repair Using Laser Direct Metal Deposition
,”
Proc. Inst. Mech. Eng., Part B
,
222
(
7
), pp.
827
836
.
7.
Kattire
,
P.
,
Paul
,
S.
,
Singh
,
R.
, and
Yan
,
W.
,
2015
, “
Experimental Characterization of Laser Cladding of CPM 9V on H13 Tool Steel for Die Repair Applications
,”
J. Manuf. Process.
,
20
, pp.
492
499
.
8.
Leino
,
M.
,
Pekkarinen
,
J.
, and
Soukka
,
R.
,
2016
, “
The Role of Laser Additive Manufacturing Methods of Metals in Repair, Refurbishment and Remanufacturing–Enabling Circular Economy
,”
Phys. Procedia
,
83
, pp.
752
760
.
9.
Petrat
,
T.
,
Graf
,
B.
,
Gumenyuk
,
A.
, and
Rethmeier
,
M.
,
2016
, “
Laser Metal Deposition as Repair Technology for a Gas Turbine Burner Made of Inconel 718
,”
Phys. Procedia
,
83
, pp.
761
768
.
10.
Cong
,
D.
,
Zhou
,
H.
,
Ren
,
Z.
,
Zhang
,
H.
,
Ren
,
L.
,
Meng
,
C.
, and
Wang
,
C.
,
2014
, “
Thermal Fatigue Resistance of Hot Work Die Steel Repaired by Partial Laser Surface Remelting and Alloying Process
,”
Opt. Lasers Eng.
,
54
, pp.
55
61
.
11.
Lourenço
,
J. M.
,
Da Sun
,
S.
,
Sharp
,
K.
,
Luzin
,
V.
,
Klein
,
A. N.
,
Wang
,
C. H.
, and
Brandt
,
M.
,
2016
, “
Fatigue and Fracture Behavior of Laser Clad Repair of AerMet® 100 Ultra-High Strength Steel
,”
Int. J. Fatigue
,
85
, pp.
18
30
.
12.
ISO
,
1997
, “
Environmental Management: Life Cycle Assessment: Principles and Framework
,”
International Organization for Standardization
, Geneva, Switzerland, Standard No.
ISO 14040:2006
.https://www.iso.org/standard/37456.html
13.
Ramani
,
K.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
,
Sutherland
,
J.
,
Handwerker
,
C.
,
Choi
,
J.-K.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Integrated Sustainable Life Cycle Design: A Review
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091004
.
14.
Huntzinger
,
D. N.
, and
Eatmon
,
T. D.
,
2009
, “
A Life-Cycle Assessment of Portland Cement Manufacturing: Comparing the Traditional Process With Alternative Technologies
,”
J. Cleaner Prod.
,
17
(
7
), pp.
668
675
.
15.
Gong
,
J.
,
Darling
,
S. B.
, and
You
,
F.
,
2015
, “
Perovskite Photovoltaics: Life-Cycle Assessment of Energy and Environmental Impacts
,”
Energy Environ. Sci.
,
8
(
7
), pp.
1953
1968
.
16.
De Gracia
,
A.
,
Rincón
,
L.
,
Castell
,
A.
,
Jiménez
,
M.
,
Boer
,
D.
,
Medrano
,
M.
, and
Cabeza
,
L. F.
,
2010
, “
Life Cycle Assessment of the Inclusion of Phase Change Materials (PCM) in Experimental Buildings
,”
Energy Build.
,
42
(
9
), pp.
1517
1523
.
17.
Murray
,
V. R.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2012
, “
Life Cycle Analysis of Grinding: A Case Study of Non-Cylindrical Computer Numerical Control Grinding Via a Unit-process Life Cycle Inventory Approach
,”
Proc. Inst. Mech. Eng., Part B
,
226
(
10
), pp.
1604
1611
.
18.
Huang
,
R.
,
Riddle
,
M.
,
Graziano
,
D.
,
Warren
,
J.
,
Das
,
S.
,
Nimbalkar
,
S.
,
Cresko
,
J.
, and
Masanet
,
E.
,
2016
, “
Energy and Emissions Saving Potential of Additive Manufacturing: The Case of Lightweight Aircraft Components
,”
J. Cleaner Prod.
,
135
, pp.
1559
1570
.
19.
Huang
,
R.
,
Riddle
,
M. E.
,
Graziano
,
D.
,
Das
,
S.
,
Nimbalkar
,
S.
,
Cresko
,
J.
, and
Masanet
,
E.
,
2017
, “
Environmental and Economic Implications of Distributed Additive Manufacturing: The Case of Injection Mold Tooling
,”
J. Ind. Ecol.
,
21
(
S1
), pp. S130–S143.
20.
Walachowicz
,
F.
,
Bernsdorf
,
I.
,
Papenfuss
,
U.
,
Zeller
,
C.
,
Graichen
,
A.
,
Navrotsky
,
V.
,
Rajvanshi
,
N.
, and
Kiener
,
C.
,
2017
, “
Comparative Energy, Resource and Recycling Lifecycle Analysis of the Industrial Repair Process of Gas Turbine Burners Using Conventional Machining and Additive Manufacturing
,”
J. Ind. Ecol.
,
21
(
S1
), pp. S203–S215.
21.
Goedkoop
,
M.
, and Spriensma, R., 1999, “
The Eco-Indicator 99—A Damage Oriented Method for Life Cycle Impact Assessment—Methodology Report, Pre Consultants
,” Amersfoort, The Netherlands, accessed Dec. 14, 2018, http://www.pre-sustainability.com/content/reports
22.
Bare
,
J. C.
,
2002
, “
TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts
,”
J. Ind. Ecol.
,
6
(
3–4
), pp.
49
78
.
23.
Huijbregts
,
M.
,
Steinmann
,
Z.
,
Elshout
,
P.
,
Stam
,
G.
,
Verones
,
F.
,
Vieira
,
M.
,
Hollander
,
A.
,
Zijp
,
M.
, and
van Zelm
,
R.
,
2016
, “
ReCiPe 2016: A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization
,” National Institute for Public Health and the Environment, Bilthoven, The Netherlands, RIVM Report No. 2016-0104.
24.
Peças
,
P.
,
Henriques
,
E.
,
Pereira
,
B.
,
Lino
,
M.
, and
Silva
,
M.
,
2006
, “
Fostering the Use of Welding Technology in the Mould Repair
,” RPD 2006 - Building the Future by Innovation, Marinha Grande, Nov. 13–15.
25.
DMG MORI
,
2018
, “
Additive Manufacturing: Reinvent Your Metal Production—Lasertec 65-3D
,” DMG MORI, accessed Dec. 12, 2018, http://media.dmgmori.com/media/epaper/additive_manufacturing_uk/index.html#0
26.
Heinrich
,
A. B.
,
2010
, “
International Reference Life Cycle Data System Handbook
,”
Int. J. Life Cycle Assess.
,
15
(
5
), pp.
524
525
.
27.
Frischknecht
,
R.
,
Jungbluth
,
N.
,
Althaus
,
H.-J.
,
Doka
,
G.
,
Dones
,
R.
,
Heck
,
T.
,
Hellweg
,
S.
,
Hischier
,
R.
,
Nemecek
,
T.
, and
Rebitzer
,
G.
,
2005
, “
The Ecoinvent Database: Overview and Methodological Framework (7 pp)
,”
Int. J. Life Cycle Assess.
,
10
(
1
), pp.
3
9
.
28.
Azevedo
,
J. M.
,
Serrenho
,
A. C.
, and
Allwood
,
J. M.
,
2018
, “
Energy and Material Efficiency of Steel Powder Metallurgy
,”
Powder Technol.
,
328
, pp. 329–336.
29.
Kellens
,
K.
,
Yasa
,
E.
,
Dewulf
,
W.
, and
Duflou
,
J.
,
2010
, “
Environmental Assessment of Selective Laser Melting and Selective Laser Sintering
,”
Going Green-Care Innovation: From Legal Compliance to Energy-Efficient Products and Services
, Vienna, Austria, Nov. 8–11, Paper No.
2.14
.https://www.researchgate.net/publication/266450713_Environmental_assessment_of_selective_laser_melting_and_selective_laser_sintering
You do not currently have access to this content.