Design for environment (DfE) principles are helpful for integrating manufacturing-specific environmental sustainability considerations into product and process design. However, such principles are often overly general, static, and disconnected from production contexts. This paper proposes a visual analytics (VA)-based framework for generating DfE principles that are contextualized to specific production setups. These principles are generated through interactive visual exploration of design and process parameters as well as manufacturing process performance metrics corresponding to the production setup. We also develop a formal schema for aiding storage, updating, and reuse of the generated DfE principles. In this schema, each DfE principle is associated with corresponding product lifecycle data and the evidence that led to the generation of that principle. We demonstrate the proposed VA framework using data from an industry-led experiment that compared dry ice (DI)-based and oil-based milling for a specific production setup.

References

1.
Manyika
,
J.
,
Chui
,
M.
,
Brown
,
B.
,
Bughin
,
J.
, and
Dobbs
,
R.
,
2011
, “
Big Data: The Next Frontier for Innovation, Competition, and Productivity
,” McKinsey Global Institute, accessed Nov. 1, 2017, https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
2.
Lee
,
J.
,
Lapira
,
E.
,
Bagheri
,
B.
, and
Kao
,
H.-A.
,
2013
, “
Recent Advances and Trends in Predictive Manufacturing Systems in Big Data Environment
,”
Manuf. Lett.
,
1
(
1
), pp.
38
41
.
3.
Barnaghi
,
P.
,
Sheth
,
A.
, and
Henson
,
C.
,
2013
, “
From Data to Actionable Knowledge: Big Data Challenges in the Web of Things [Guest Editors' Introduction]
,”
IEEE Intell. Syst.
,
28
(
6
), pp.
6
11
.
4.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Chandrasegaran
,
S. K.
, and
Ramani
,
K.
,
2017
, “
Visual Analytics Tools for Sustainable Lifecycle Design: Current Status, Challenges, and Future Opportunities
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111415
.
5.
Ramanujan
,
D.
, and
Bernstein
,
W. Z.
,
2018
, “
VESPER: Visual Exploration of Similarity and Performance Metrics for Computer-Aided Design Repositories
,”
ASME
Paper No. MSEC2018-6527.
6.
Kim
,
H. H. M.
,
Liu
,
Y.
,
Wang
,
C. C.
, and
Wang
,
Y.
,
2017
, “
Special Issue: Data-Driven Design (D3)
,”
ASME J. Mech. Des.
,
139
(
11
), p.
110301
.
7.
Wang
,
J.
,
Ma
,
Y.
,
Zhang
,
L.
,
Gao
,
R. X.
, and
Wu
,
D.
,
2018
, “
Deep Learning for Smart Manufacturing: Methods and Applications
,”
J. Manuf. Syst.
,
48
(Pt. C), pp. 144–156.
8.
Wuest
,
T.
,
Weimer
,
D.
,
Irgens
,
C.
, and
Thoben
,
K.-D.
,
2016
, “
Machine Learning in Manufacturing: Advantages, Challenges, and Applications
,”
Prod. Manuf. Res.
,
4
(
1
), pp.
23
45
.
9.
Thomas
,
J. J.
,
2005
,
Illuminating the Path: The Research and Development Agenda for Visual Analytics
,
IEEE Computer Society
,
Washington, DC
.
10.
Lenox
,
M.
,
King
,
A.
, and
Ehrenfeld
,
J.
,
2000
, “
An Assessment of Design-for-Environment Practices in Leading U.S. Electronics Firms
,”
Interfaces
,
30
(
3
), pp.
83
94
.
11.
Keoleian
,
G. A.
, and
Menerey
,
D.
,
1993
, “
Life Cycle Design Guidance Manual: Environmental Requirements and the Product System
,”
Life Cycle Design Guidance Manual: Environmental Requirements and the Product System
,
United States Environmental Protection Agency
,
Washington, DC
.
12.
Graedel
,
T. E.
, and
Allenby
,
B. R.
,
1996
,
Design for Environment
,
Prentice Hall
,
Upper Saddle River, NJ
.
13.
Brezet
,
H.
,
1997
,
Ecodesign: A Promising Approach to Sustainable Production and Consumption
, United Nations Environmental Program (UNEP), Nairobi, Kenya.
14.
Gungor
,
A.
, and
Gupta
,
S. M.
,
1999
, “
Issues in Environmentally Conscious Manufacturing and Product Recovery: A Survey
,”
Comput. Ind. Eng.
,
36
(
4
), pp.
811
853
.
15.
Gutowski
,
T. G.
,
Murphy
,
C. F.
,
Allen
,
D. T.
,
Bauer
,
D. J.
,
Bras
,
B.
,
Piwonka
,
T. S.
,
Sheng
,
P. S.
,
Sutherland
,
J. W.
,
Thurston
,
D. L.
, and
Wolff
,
E. E.
,
2001
, “
Environmentally Benign Manufacturing
,” International Technology Research Institute, World Technology (WTEC) Division, Baltimore, MD,
Report
.http://wtec.org/loyola/pdf/ebm.pdf
16.
Giudice
,
F.
,
La Rosa
,
G.
, and
Risitano
,
A.
,
2006
,
Product Design for the Environment: A Life Cycle Approach
,
CRC Press
,
Boca Raton, FL
.
17.
Vezzoli
,
C.
, and
Manzini
,
E.
,
2008
,
Design for Environmental Sustainability
,
Springer
,
London
.
18.
Fiksel
,
J.
,
2009
,
Design for Environment: A Guide to Sustainable Product Development
,
McGraw-Hill Professional
,
New York
.
19.
Telenko
,
C.
,
O'Rourke
,
J. M.
,
Seepersad
,
C. C.
, and
Webber
,
M. E.
,
2016
, “
A Compilation of Design for Environment Guidelines
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031102
.
20.
Ehrenfeld
,
J.
, and
Lenox
,
M. J.
,
1997
, “
The Development and Implementation of DfE Programmes
,”
J. Sustainable Prod. Des.
,
1
(
1
), pp.
17
27
.
21.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Choi
,
J.-K.
,
Koho
,
M.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2014
, “
Prioritizing Design for Environment Strategies Using a Stochastic Analytic Hierarchy Process
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071002
.
22.
Pigosso
,
D. C. A.
,
McAloone
,
T. C.
, and
Rozenfeld
,
H.
,
2014
, “
Systematization of Best Practices for Ecodesign Implementation
,”
DS 77: The DESIGN 2014 13th International Design Conference
, Dubrovnik, Croatia, May 19–22, pp. 1651–1662.
23.
Hernandez
,
N. V.
,
Kremer
,
G. O.
,
Schmidt
,
L. C.
, and
Herrera
,
P. A.
,
2012
, “
Development of an Expert System to Aid Engineers in the Selection of Design for Environment Methods and Tools
,”
Expert Syst. Appl.
,
39
(
10
), pp.
9543
9553
.
24.
Rombouts
,
J. P.
,
1998
, “
LEADS-II. A Knowledge-Based System for Ranking DfE-Options
,”
IEEE International Symposium on Electronics and the Environment
(
ISEE
), Oak Brook, IL, May 6, pp.
287
291
.
25.
Rounds
,
K. S.
, and
Cooper
,
J. S.
,
2002
, “
Development of Product Design Requirements Using Taxonomies of Environmental Issues
,”
Res. Eng. Des.
,
13
(
2
), pp.
94
108
.
26.
Telenko
,
C.
, and
Seepersad
,
C. C.
,
2010
, “
A Methodology for Identifying Environmentally Conscious Guidelines for Product Design
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091009
.
27.
Luttropp
,
C.
, and
Lagerstedt
,
J.
,
2006
, “
Ecodesign and the Ten Golden Rules: Generic Advice for Merging Environmental Aspects Into Product Development
,”
J. Cleaner Prod.
,
14
(
15–16
), pp.
1396
1408
.
28.
Oehlberg
,
L.
,
Bayley
,
C.
,
Hartman
,
C.
, and
Agogino
,
A.
,
2012
, “
Mapping the Life Cycle Analysis and Sustainability Impact of Design for Environment Principles
,”
Leveraging Technology for a Sustainable World
,
Springer
,
Berlin
, pp.
221
226
.
29.
Hauschild
,
M. Z.
,
Jeswiet
,
J.
, and
Alting
,
L.
,
2004
, “
Design for Environment—Do We Get the Focus Right?
,”
CIRP Ann.-Manuf. Technol.
,
53
(
1
), pp.
1
4
.
30.
Holt
,
R.
, and
Barnes
,
C.
,
2010
, “
Towards an Integrated Approach to Design for X: An Agenda for Decision-Based DFX Research
,”
Res. Eng. Des.
,
21
(
2
), pp.
123
136
.
31.
Ramani
,
K.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
,
Sutherland
,
J.
,
Handwerker
,
C.
,
Choi
,
J.-K.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Integrated Sustainable Life Cycle Design: A Review
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091004
.
32.
Sedlmair
,
M.
,
Isenberg
,
P.
,
Baur
,
D.
, and
Butz
,
A.
,
2011
, “
Information Visualization Evaluation in Large Companies: Challenges, Experiences and Recommendations
,”
Inf. Visualization
,
10
(
3
), pp.
248
266
.
33.
Mazumdar
,
S.
,
Varga
,
A.
,
Lanfranchi
,
V.
,
Petrelli
,
D.
, and
Ciravegna
,
F.
,
2011
, “
A Knowledge Dashboard for Manufacturing Industries
,”
Extended Semantic Web Conference
, Heraklion, Greece, May 29–30, pp.
112
124
.
34.
Xu
,
P.
,
Mei
,
H.
,
Ren
,
L.
, and
Chen
,
W.
,
2016
, “
ViDX: Visual Diagnostics of Assembly Line Performance in Smart Factories
,”
IEEE Conference on Visual Analytics Science and Technology
, Baltimore, MD, Oct. 23–28, p.
10
.
35.
Jo
,
J.
,
Huh
,
J.
,
Park
,
J.
,
Kim
,
B.
, and
Seo
,
J.
,
2014
, “
Livegantt: Interactively Visualizing a Large Manufacturing Schedule
,”
IEEE Trans. Vis. Comput. Graph.
,
20
(
12
), pp.
2329
2338
.
36.
Reijner
,
H.
,
2008
, “
The Development of the Horizon Graph
,” accessed Nov 1, 2017, http://www.stonesc.com/Vis08_Workshop/DVD/Reijner_submission.pdf
37.
Bernstein
,
W. Z.
,
Ramanujan
,
D.
,
Elmqvist
,
N.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2014
, “
ViSER: Visualizing Supply Chains for Eco-Conscious Redesign
,”
ASME
Paper No. DETC2014-34960.
38.
Kamath
,
M.
,
Srivathsan
,
S.
,
Ingalls
,
R. G.
,
Shen
,
G.
, and
Pulat
,
P. S.
,
2011
, “
TISCSoft: A Decision Support System for Transportation Infrastructure and Supply Chain System Planning
,”
44th Hawaii Internal Conference on System Sciences
(
HICSS
), Kauai, HI, Jan. 4–7, pp.
1
9
.
39.
Hesse
,
S.
,
Spehr
,
M.
,
Gumhold
,
S.
, and
Groh
,
R.
,
2014
, “
Visualizing Time-Dependent Key Performance Indicator in a Graph-Based Analysis
,” IEEE Emerging Technology and Factory Automation (
ETFA
), Barcelona, Spain, Sept. 16–19, pp.
1
7
.
40.
Childerhouse
,
P.
, and
Towill
,
D. R.
,
2002
, “
Analysis of the Factors Affecting Real-World Value Stream Performance
,”
Int. J. Prod. Res.
,
40
(
15
), pp.
3499
3518
.
41.
Bertoni
,
M.
,
Bertoni
,
A.
,
Broeze
,
H.
,
Dubourg
,
G.
, and
Sandhurst
,
C.
,
2014
, “
Using 3D CAD Models for Value Visualization: An Approach With SIEMENS NX HD3D Visual Reporting
,”
Comput. Aided Des. Appl.
,
11
(
3
), pp.
284
294
.
42.
Gutowski
,
T.
,
Dahmus
,
J.
, and
Thiriez
,
A.
,
2006
, “
Electrical Energy Requirements for Manufacturing Processes
,”
13th CIRP International Conference on Life Cycle Engineering
, Lueven, Belgium, May 31—June 2, pp.
623
638
.http://web.mit.edu/2.813/www/readings/Gutowski-CIRP.pdf
43.
UNECE
,
2005
, “
Codes for Units of Measure Used in International Trade
,” United Nations Economic Commission for Europe,
Report
.http://digitallibrary.un.org/record/547277/files/%5BE_ECE_%5DTRADE_CEFACT_2005_19-EN.pdf
44.
Li
,
K.
, and
Bernstein
,
W. Z.
,
2017
, “
Developing a Capability-Based Similarity Metric for Manufacturing Processes
,”
ASME
Paper No. MSEC2017-2790.
45.
Todd
,
R.
,
Allen
,
D.
, and
Alting
,
L.
,
1994
,
Manufacturing Processes Reference Guide
,
Industrial Press
,
New York
.
46.
Lu
,
T.
,
Gupta
,
A.
,
Jayal
,
A.
,
Badurdeen
,
F.
,
Feng
,
S. C.
,
Dillon
,
O.
, Jr.
, and
Jawahir
,
I.
,
2011
, “
A Framework of Product and Process Metrics for Sustainable Manufacturing
,”
Advances in Sustainable Manufacturing
,
Springer
,
Berlin
, pp.
333
338
.
47.
Ashby
,
M.
, and
Cebon
,
D.
,
1993
, “
Materials Selection in Mechanical Design
,”
J. Phys. IV
,
3
(
C7
), pp.
C7-1
C7-9
.
48.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Benjamin
,
W.
,
Ramani
,
K.
,
Elmqvist
,
N.
,
Kulkarni
,
D.
, and
Tew
,
J.
,
2015
, “
A Framework for Visualization-Driven Eco-Conscious Design Exploration
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
4
), p.
041010
.
49.
ISO
,
1994
, “
Industrial Automation Systems and Integration – Product Data Representation and Exchange—Part 1: Overview and Fundamental Principles
,” International Organization for Standardization, Geneva, Switzerland, Standard No. 10303-1:1994.
50.
ISO
,
2006
, “
Environmental Management—Life Cycle Assessment—Principles and Framework
,” International Organization for Standardization, Geneva, Switzerland, Standard No. 14040:2006.
51.
ASTM
,
2016
, “
Standard Guide for Characterizing Environmental Aspects of Manufacturing Processes
,” ASTM International, West Conshohocken, PA, Standard No. E3012-16.
52.
Barbau
,
R.
,
Krima
,
S.
,
Rachuri
,
S.
,
Narayanan
,
A.
,
Fiorentini
,
X.
,
Foufou
,
S.
, and
Sriram
,
R. D.
,
2012
, “
OntoSTEP: Enriching Product Model Data Using Ontologies
,”
Comput. Aided Des.
,
44
(
6
), pp.
575
590
.
53.
Giffi
,
C.
,
McNelly
,
J.
,
Dollar
,
B.
,
Carrick
,
G.
,
Drew
,
M.
, and
Gangula
,
B.
,
2015
, “
The Skills Gap in U.S. Manufacturing: 2015 and Beyond
,” Deloitte Development LLC, Washington, DC, accessed Nov. 1, 2017, https://www2.deloitte.com/us/en/pages/manufacturing/articles/skills-gap-manufacturing-survey-report.html
You do not currently have access to this content.