Due to the increasing concern on environmental sustainability, many efforts have been made to improve the energy efficiency and reduce carbon emissions of manufacturing processes, including abrasive machining processes. Oilstones, as the abrasive tool of honing machines, are the key parts to remove material. However, the theoretical models and methods that can be used to support the selection of oilstone parameters for reduced carbon emissions are lacking. To fill this gap, this paper proposes a method to optimize shape and distribution of abrasive grains for minimized carbon emissions while maintaining surface quality. First, the carbon emissions boundary is defined, and a carbon emissions calculation model is established from a macroperspective. As each grain contributes to the total carbon emissions, the behavior of grains during honing is then described and analyzed to obtain the carbon emissions model from a microperspective. Surface area of oilstones and the required total volume of material removal are kept constant to meet the physical size limit of oilstones and machining requirement of workpiece. Third, a shape and distribution optimization model is developed to minimize carbon emissions. A modified particle swarm optimization (PSO) algorithm is adopted to solve this problem. Finally, the proposed method is applied to a case study to validate its effectiveness. Results show that carbon emissions can be reduced by up to 30% using the proposed model. The proposed method provides a new green manufacturing strategy for the honing process and a possibility to customize abrasive tools to meet the environmental challenges.

References

References
1.
EPA
,
2017
, “
Greenhouse Gas Reporting Program (GHGRP)
,” United States Environmental Protection Agency, Washington, DC, accessed Sept. 25, 2018, https://www.epa.gov/ghgreporting/ghgrp-yearly-overview
2.
EIA
,
2017
, “
International Energy Outlook 2017
,” U. S. Energy Information Administration, accessed Sept. 25, 2018, https://www.eia.gov/outlooks/ieo/
3.
Swat
,
M.
,
Brünnet
,
H.
, and
Bähre
,
D.
,
2014
, “
Selecting Manufacturing Process Chains in the Early Stage of the Product Engineering Process With Focus on Energy Consumption
,”
Technology and Manufacturing Process Selection: The Product Life Cycle Perspective
,
E.
Henriques
,
P.
Pecas
, and
A.
Silva
, eds.,
Springer
,
London
, pp.
153
173
.
4.
Brueske
,
S.
,
Sabouni
,
R.
,
Zach
,
C.
, and
Andres
,
H.
,
2012
, “
U.S. manufacturing Energy Use and Greenhouse Gas Emissions Analysis
,” Oak Ridge National Laboratory (ORNL), Oak Ridge, TN.
5.
Ren
,
Y.
,
Zhang
,
C.
,
Zhao
,
F.
,
Xiao
,
H.
, and
Tian
,
G.
,
2018
, “
An Asynchronous Parallel Disassembly Planning Based on Genetic Algorithm
,”
Eur. J. Oper. Res.
,
269
(
2
), pp.
647
660
.
6.
ISO
,
2011
, “
ISO 50001:2011
,” International Organization for Standardization, Geneva, Switzerland, accessed Sept. 25, 2018, https://www.iso.org/standard/51297.html
7.
Bunse
,
K.
,
Vodicka
,
M.
,
Schönsleben
,
P.
,
Brülhart
,
M.
, and
Ernst
,
F. O.
,
2011
, “
Integrating Energy Efficiency Performance in Production Management—Gap Analysis Between Industrial Needs and Scientific Literature
,”
J. Cleaner Prod.
,
19
(
6–7
), pp.
667
679
.
8.
IMS2020
,
2010
, “
"General Description of the IMS2020 Project
,” IMS2020 Project Team, Italy, accessed Sept. 25, 2018, http://www.ims2020.net/
9.
Klocke
,
F.
, and
Brocker
,
R.
,
2014
, “
Honing Process
,”
Encyclopedia of Lubricants and Lubrication
,
T.
Mang
, ed.,
Springer
,
Berlin
, pp.
797
803
.
10.
Aurich
,
J. C.
,
Carrella
,
M.
, and
Steffes
,
M.
,
2012
, “
Evaluation of Abrasive Processes and Machines With Respect to Energy Efficiency
,”
Leveraging Technology for a Sustainable World
,
Springer
,
Berlin
, pp.
329
333
.
11.
Baniszewski
,
B.
,
2005
, “An Environmental Impact Analysis of Grinding,”
Massachusetts Institute of Technology
,
Cambridge, MA
.
12.
Marinescu
,
I. D.
,
Rowe
,
W. B.
,
Dimitrov
,
B.
, and
Ohmori
,
H.
,
2013
, “
5—Forces, Friction, and Energy
,”
Tribology of Abrasive Machining Processes
,
2nd ed.
,
William Andrew Publishing
,
Oxford, UK
, pp.
95
136
.
13.
Fritz Klocke
,
E. h.
, and
Kuchie
,
A.
,
2009
, “
Principles of Cutting Edge Engagement
,”
Manufacturing Processes 2: Grinding, Honing, Lapping
,
F.
Klocke
, ed.,
Springer
,
Berlin
, pp.
1
14
.
14.
Setti
,
D.
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2017
, “
A Method for Prediction of Active Grits Count in Surface Grinding
,”
Wear
,
382–383
, pp.
71
77
.
15.
Zhang
,
Y.
,
Li
,
C.
,
Ji
,
H.
,
Yang
,
X.
,
Yang
,
M.
,
Jia
,
D.
,
Zhang
,
X.
,
Li
,
R.
, and
Wang
,
J.
,
2017
, “
Analysis of Grinding Mechanics and Improved Predictive Force Model Based on Material-Removal and Plastic-Stacking Mechanisms
,”
Int. J. Mach. Tools Manuf.
,
122
, pp.
81
97
.
16.
Darafon
,
A.
,
Warkentin
,
A.
, and
Bauer
,
R.
,
2013
, “
3D Metal Removal Simulation to Determine Uncut Chip Thickness, Contact Length, and Surface Finish in Grinding
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1715
1724
.
17.
Yu
,
H.
,
Lyu
,
Y.
,
Wang
,
J.
, and
Wang
,
X.
,
2018
, “
A Biomimetic Engineered Grinding Wheel Inspired by Phyllotaxis Theory
,”
J. Mater. Process. Technol.
,
251
, pp.
267
281
.
18.
Yang
,
Z.
,
Zhang
,
M.
,
Zhang
,
Z.
,
Liu
,
A.
,
Yang
,
R.
, and
Liu
,
S.
,
2016
, “
A Study on Diamond Grinding Wheels With Regular Grain Distribution Using Additive Manufacturing (AM) Technology
,”
Mater. Des.
,
104
, pp.
292
297
.
19.
Brinksmeier
,
E.
,
Aurich
,
J.
,
Govekar
,
E.
,
Heinzel
,
C.
,
Hoffmeister
,
H.-W.
,
Klocke
,
F.
,
Peters
,
J.
,
Rentsch
,
R.
,
Stephenson
,
D.
, and
Uhlmann
,
E.
,
2006
, “
Advances in Modeling and Simulation of Grinding Processes
,”
CIRP Ann.-Manuf. Technol.
,
55
(
2
), pp.
667
696
.
20.
Tahvilian
,
A. M.
,
Liu
,
Z.
,
Champliaud
,
H.
,
Hazel
,
B.
, and
Lagacé
,
M.
,
2015
, “
Characterization of Grinding Wheel Grain Topography Under Different Robotic Grinding Conditions Using Confocal Microscope
,”
Int. J. Adv. Manuf. Technol.
,
80
(
5–8
), pp.
1159
1171
.
21.
Kersting
,
P.
,
Joliet
,
R.
, and
Kansteiner
,
M.
,
2015
, “
Modeling and Simulative Analysis of the Micro-Finishing Process
,”
CIRP Ann.
,
64
(
1
), pp.
321
324
.
22.
Feng
,
Q.
,
Ren
,
C.
, and
Pei
,
Z.
,
2015
, “
A Physics-Based Predictive Model for Number of Contact Grains and Grain Depth of Cut in Honing
,”
Mach. Sci. Technol.
,
19
(
1
), pp.
50
70
.
23.
Wang
,
S.
,
Li
,
C.
,
Zhang
,
X.
,
Jia
,
D.
,
Zhang
,
D.
, and
Zhang
,
Q.
,
2014
, “
Modeling and Simulation of the Single Grain Grinding Process of the Nano-Particle Jet Flow of Minimal Quantity Lubrication
,”
Open Mater. Sci. J.
,
8
(
1
), pp.
55
62
.
24.
Koshy
,
P.
,
Iwasald
,
A.
, and
Elbestawl
,
M. A.
,
2003
, “
Surface Generation With Engineered Diamond Grinding Wheels: Insights From Simulation
,”
CIRP Ann.
,
52
(
1
), pp.
271
274
.
25.
Li
,
H. N.
,
Yu
,
T. B.
,
Da Zhu
,
L.
, and
Wang
,
W. S.
,
2017
, “
Analytical Modeling of Ground Surface Topography in Monocrystalline Silicon Grinding Considering the Ductile-Regime Effect
,”
Arch. Civ. Mech. Eng.
,
17
(
4
), pp.
880
893
.
26.
Wang
,
D.
,
Ge
,
P.
,
Bi
,
W.
, and
Jiang
,
J.
,
2014
, “
Grain Trajectory and Grain Workpiece Contact Analyses for Modeling of Grinding Force and Energy Partition
,”
Int. J. Adv. Manuf. Technol.
,
70
(
9–12
), pp.
2111
2123
.
27.
Azizi
,
A.
, and
Mohamadyari
,
M.
,
2015
, “
Modeling and Analysis of Grinding Forces Based on the Single Grit Scratch
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5–8
), pp.
1223
1231
.
28.
Li
,
H. N.
,
Yu
,
T. B.
,
Wang
,
Z. X.
,
Zhu
,
L. D.
, and
Wang
,
W. S.
,
2017
, “
Detailed Modeling of Cutting Forces in Grinding Process Considering Variable Stages of Grain-Workpiece Micro Interactions
,”
Int. J. Mech. Sci.
, 126, pp. 319–339.
29.
Sivatte-Adroer
,
M.
,
Llanas-Parra
,
X.
,
Buj-Corral
,
I.
, and
Vivancos-Calvet
,
J.
,
2016
, “
Indirect Model for Roughness in Rough Honing Processes Based on Artificial Neural Networks
,”
Precis. Eng.
,
43
, pp.
505
513
.
30.
Zhou
,
Z.
,
Zhang
,
X.
,
Yao
,
Z.
, and
Xi
,
L.
,
2017
, “
Predicting Multi-Scale Dimensional Accuracy of Engine Cylinder by Honing
,”
ASME
Paper No. MSEC2017-2673
.
31.
Park
,
C.-W.
,
Kwon
,
K.-S.
,
Kim
,
W.-B.
,
Min
,
B.-K.
,
Park
,
S.-J.
,
Sung
,
I.-H.
,
Yoon
,
Y. S.
,
Lee
,
K.-S.
,
Lee
,
J.-H.
, and
Seok
,
J.
,
2009
, “
Energy Consumption Reduction Technology in Manufacturing—A Selective Review of Policies, Standards, and Research
,”
Int. J. Precis. Eng. Manuf.
,
10
(
5
), pp.
151
173
.
32.
Li
,
L.
,
Huang
,
H.
,
Zhao
,
F.
,
Sutherland
,
J. W.
, and
Liu
,
Z.
,
2017
, “
An Energy-Saving Method by Balancing the Load of Operations for Hydraulic Press
,”
IEEE/ASME Trans. Mechatronics
,
22
(
6
), pp.
2673
2683
.
33.
Li
,
L.
,
Deng
,
X.
,
Zhao
,
J.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2018
, “
Multi-Objective Optimization of Tool Path Considering Efficiency, Energy-Saving and Carbon-Emission for Free-Form Surface Milling
,”
J. Cleaner Prod.
,
172
, pp.
3311
3322
.
34.
Denkena
,
B.
,
Reichstein
,
M.
,
Kramer
,
N.
,
Jacobsen
,
J.
, and
Jung
,
M.
,
2005
, “
Eco- and Energy-Efficient Grinding Processes
,”
Key Eng. Mater.
, 291–292, pp. 39–44.
35.
Oliveira
,
J. F. G.
,
Silva
,
E. J.
,
Guo
,
C.
, and
Hashimoto
,
F.
,
2009
, “
Industrial Challenges in Grinding
,”
CIRP Ann.
,
58
(
2
), pp.
663
680
.
36.
Garretson
,
I. C.
,
Peukert
,
B.
,
Linke
,
B. S.
, and
Uhlmann
,
E.
,
2017
, “
Hypothetical Sustainability Axioms for Axiomatic Design With an Application in Grinding Machine Design
,”
ASME
Paper No. MSEC2017-2874
.
37.
Luan
,
X.
,
Zhang
,
S.
, and
Cai
,
G.
,
2016
, “
Optimal Cutting Parameters to Reduce Power Consumption in Face Milling of a Cast Iron Alloy for Environmental Sustainability
,”
Sustainable Design and Manufacturing 2016
,
R.
Setchi
,
R. J.
Howlett
,
Y.
Liu
, and
P.
Theobald
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
135
148
.
38.
Winter
,
M.
,
Li
,
W.
,
Kara
,
S.
, and
Herrmann
,
C.
,
2014
, “
Determining Optimal Process Parameters to Increase the Eco-Efficiency of Grinding Processes
,”
J. Cleaner Prod.
,
66
, pp.
644
654
.
39.
Li
,
W.
,
Winter
,
M.
,
Kara
,
S.
, and
Herrmann
,
C.
,
2012
, “
Eco-Efficiency of Manufacturing Processes: A Grinding Case
,”
CIRP Ann.
,
61
(
1
), pp.
59
62
.
40.
Linke
,
B. S.
,
2013
, “
Sustainability Indicators for Grinding Applied to Dressing Strategies
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054502
.
41.
Linke
,
B.
,
2016
, “
Sustainability of Grinding Tools
,”
Life Cycle and Sustainability of Abrasive Tools
,
B.
Linke
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
173
213
.
42.
Linke
,
B. S.
,
Corman
,
G. J.
,
Dornfeld
,
D. A.
, and
Tönissen
,
S.
,
2013
, “
Sustainability Indicators for Discrete Manufacturing Processes Applied to Grinding Technology
,”
J. Manuf. Syst.
,
32
(
4
), pp.
556
563
.
43.
Vance
,
R. M.
,
Fu
,
Z.
, and
John
,
W. S.
,
2012
, “
Life Cycle Analysis of Grinding: A Case Study of Non-Cylindrical Computer Numerical Control Grinding Via a Unit-Process Life Cycle Inventory Approach
,”
Proc. Inst. Mech. Eng., Part B
,
226
(
10
), pp.
1604
1611
.
44.
Filleti
,
R. A. P.
,
Silva
,
D. A. L.
,
Silva
,
E. J. D.
, and
Ometto
,
A. R.
,
2017
, “
Productive and Environmental Performance Indicators Analysis by a Combined LCA Hybrid Model and Real-Time Manufacturing Process Monitoring: A Grinding Unit Process Application
,”
J. Cleaner Prod.
,
161
, pp.
510
523
.
45.
Linke
,
B. S.
, and
Dornfeld
,
D. A.
,
2012
, “
Application of Axiomatic Design Principles to Identify More Sustainable Strategies for Grinding
,”
J. Manuf. Syst.
,
31
(
4
), pp.
412
419
.
46.
Aurich
,
J. C.
,
Linke
,
B.
,
Hauschild
,
M.
,
Carrella
,
M.
, and
Kirsch
,
B.
,
2013
, “
Sustainability of Abrasive Processes
,”
CIRP Ann.
,
62
(
2
), pp.
653
672
.
47.
Lu
,
Q.
,
Zhou
,
G.-H.
,
Xiao
,
Z.-D.
,
Chang
,
F.-T.
, and
Tian
,
C.-L.
,
2018
, “
A Selection Methodology of Key Parts Based on the Characteristic of Carbon Emissions for Low-Carbon Design
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3359
3373
.
48.
Lu
,
Q.
,
Zhou
,
G.
, and
Zhu
,
J.
,
2016
, “
A Calculation Method of Embodied Carbon-Energy for Low-Carbon Products
,”
Procedia CIRP
,
57
, pp.
680
685
.
49.
Gutowski
,
T. G.
,
Branham
,
M. S.
,
Dahmus
,
J. B.
,
Jones
,
A. J.
,
Thiriez
,
A.
, and
Sekulic
,
D. P.
,
2009
, “
Thermodynamic Analysis of Resources Used in Manufacturing Processes
,”
Environ. Sci. Technol.
,
43
(
5
), pp.
1584
1590
.
50.
Lu
,
Q.
,
Zhou
,
G.-H.
,
Zhou
,
C.
, and
Xiao
,
Z.-D.
,
2017
, “
A Carbon Emissions Allocation Method Based on Temperature Field for Products in the Usage Stage
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
917
929
.
51.
Chen
,
X.
, and
Rowe
,
W. B.
,
1996
, “
Analysis and Simulation of the Grinding Process—Part I: Generation of the Grinding Wheel Surface
,”
Int. J. Mach. Tools Manuf.
,
36
(
8
), pp.
871
882
.
52.
Stachowiak
,
G.
, and
Batchelor
,
A. W.
,
2013
,
Engineering Tribology
,
Butterworth-Heinemann
,
Oxford, UK
.
53.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE
International Conference on Neural Networks,
Perth, WA, Australia, Nov. 27–Dec. 1, pp.
1942
1948
.
54.
Ren
,
Y.
,
Yu
,
D.
,
Zhang
,
C.
,
Tian
,
G.
,
Meng
,
L.
, and
Zhou
,
X.
,
2017
, “
An Improved Gravitational Search Algorithm for Profit-Oriented Partial Disassembly Line Balancing Problem
,”
Int. J. Prod. Res.
,
55
(
24
), pp.
7302
7316
.
55.
Kusiak
,
A.
,
Li
,
M.
, and
Tang
,
F.
,
2010
, “
Modeling and Optimization of HVAC Energy Consumption
,”
Appl. Energy
,
87
(
10
), pp.
3092
3102
.
You do not currently have access to this content.