There has been an increasing trend for manufacturers to shift toward sustainable manufacturing strategies in response to an ever-growing pressure from fluctuating energy price and environmental crisis. Reducing energy consumption is considered as an important step to achieve the sustainability of a production system. This paper proposes an event-based control methodology to improve the production energy efficiency through strategically switching appropriate stations to energy saving mode. Based on an event-based analysis of production dynamics, an analytical approach is developed to quantitatively predict the system level production loss resulted from an energy saving control event (ESCE). A genetic-based control algorithm is proposed to balance the trade-off between the gain from energy saving and the expense of throughput loss. The energy improvement analysis results in a fundamental understanding of production energy dynamics and a significant decrease of energy cost for a manufacturing facility. Numerical case studies are performed to validate the effectiveness of the proposed method. It is found that the control method can effectively reduce energy cost, while only slightly impacting production.

References

References
1.
Park
,
C. W.
,
Kwon
,
K. S.
,
Kim
,
W. B.
,
Min
,
B. K.
,
Park
,
S. J.
,
Sung
,
I. H.
,
Yoon
,
Y. S.
,
Lee
,
K. S.
,
Lee
,
J. H.
, and
Seok
,
J.
,
2009
, “
Energy Consumption Reduction Technology in Manufacturing—A Selective Review of Policies, Standards, and Research
,”
Int. J. Precis. Eng. Manuf.
,
10
(
5
), pp.
151
173
.
2.
Mardan
,
N.
, and
Klahr
,
R.
,
2012
, “
Combining Optimisation and Simulation in an Energy Systems Analysis of a Swedish Iron Foundry
,”
Energy
,
44
(
1
), pp.
410
419
.
3.
Granade, Choi
,
H.
,
Creyts
,
J.
,
Derkach
,
A.
,
Farese
,
P.
,
Nyquist
,
S.
, and
Ostrowski
,
K.
,
2009
, “
Unlocking Energy Efficiency in the U.S. Economy
,” McKinsey & Company, New York
4.
Brundage
,
M. P.
,
Chang
,
Q.
,
Zou
,
J.
,
Li
,
Y.
,
Arinez
,
J.
, and
Xiao
,
G.
,
2015
, “
Energy Economics in the Manufacturing Industry: A Return on Investment Strategy
,”
Energy
,
93
, pp.
1426
1435
.
5.
Chang
,
Q.
,
Xiao
,
G.
,
Biller
,
S.
, and
Li
,
L.
,
2013
, “
Energy Saving Opportunity Analysis of Automotive Serial Production Systems (March 2012)
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
2
), pp.
334
342
.
6.
Terkaj
,
W.
, and
Urgo
,
M.
,
2014
, “
Ontology-Based Modeling of Production Systems for Design and Performance Evaluation
,”
12th IEEE International Conference on Industrial Informatics
(
INDIN
), Porto Alegre, Brazil, July 27–30, pp. 748–753.
7.
Colledani
,
M.
, and
Gershwin
,
S. B.
,
2013
, “
A Decomposition Method for Approximate Evaluation of Continuous Flow Multi-Stage Lines With General Markovian Machines
,”
Ann. Oper. Res.
,
209
(
1
), pp.
5
40
.
8.
Li
,
J.
, and
Meerkov
,
S. M.
,
2007
,
Production Systems Engineering
,
Wingspan Press
,
Livemore, CA
.
9.
Li
,
Y.
,
He
,
Y.
,
Wang
,
Y.
,
Wang
,
Y.
,
Yan
,
P.
, and
Lin
,
S.
,
2015
, “
A Modeling Method for Hybrid Energy Behaviors in Flexible Machining Systems
,”
Energy
,
86
, pp.
164
174
.
10.
Collier
,
P. I.
, and
Ornek
,
A.
,
1983
, “
A Mathematical Model for Energy and in-Process Inventory Assessment in a Manufacturing System
,”
Appl. Energy
,
13
(
4
), pp.
265
280
.
11.
Dai
,
M.
,
Tang
,
D.
,
Giret
,
A.
,
Salido
,
M. A.
, and
Li
,
W. D.
,
2013
, “
Energy-Efficient Scheduling for a Flexible Flow Shop Using an Improved Genetic-Simulated Annealing Algorithm
,”
Rob. Comput.-Integr. Manuf.
,
29
(
5
), pp.
418
429
.
12.
Rager
,
M.
,
Gahm
,
C.
, and
Denz
,
F.
,
2015
, “
Energy-Oriented Scheduling Based on Evolutionary Algorithms
,”
Comput. Oper. Res.
,
54
, pp.
218
231
.
13.
Gershwin
,
S. B.
,
1987
, “
Representation and Analysis of Transfer Lines With Machines That Have Different Processing Rates
,”
Ann. Oper. Res.
,
9
(
1
), pp.
511
530
.
14.
Zhang
,
L.
,
Wang
,
C.
,
Arinez
,
J.
, and
Biller
,
S.
,
2013
, “
Transient Analysis of Bernoulli Serial Lines: Performance Evaluation and System-Theoretic Properties
,”
IIE Trans.
,
45
(
5
), pp.
528
543
.
15.
Liu
,
X.
,
Li
,
J.
,
Al-Khalifa
,
K. N.
,
Hamouda
,
A. S.
,
Coit
,
D. W.
, and
Elsayed
,
E. A.
,
2013
, “
Condition-Based Maintenance for Continuously Monitored Degrading Systems With Multiple Failure Modes
,”
IIE Trans.
,
45
(
4
), pp.
422
435
.
16.
Dietmair
,
A.
, and
Verl
,
A.
,
2009
, “
Energy Consumption Forecasting and Optimisation for Tool Machines
,”
Mod. Mach. Sci. J.
,
2009
(
1
), pp.
62
67
.
17.
Chen
,
G.
,
Zhang
,
L.
,
Arinez
,
J.
, and
Biller
,
S.
,
2013
, “
Energy-Efficient Production Systems Through Schedule-Based Operations
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
1
), pp.
27
37
.
18.
Li
,
Y.
,
Chang
,
Q.
,
Ni
,
J.
, and
Brundage
,
M. P.
,
2018
, “
Event-Based Supervisory Control for Energy Efficient Manufacturing Systems
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
1
), pp.
92
103
.
19.
Herrmann
,
C.
,
Thiede
,
S.
,
Kara
,
S.
, and
Hesselbach
,
J.
,
2011
, “
Energy Oriented Simulation of Manufacturing Systems—Concept and Application
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
45
48
.
20.
May
,
G.
,
Stahl
,
B.
, and
Taisch
,
M.
,
2016
, “
Energy Management in Manufacturing: Toward Eco-Factories of the Future—A Focus Group Study
,”
Appl. Energy
,
164
, pp.
628
638
.
21.
Peng
,
T.
, and
Xu
,
X.
,
2012
, “
Energy-Efficient Machining Systems: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
72
(9–12), pp.
1
18
.
22.
Brundage
,
M. P.
,
Chang
,
Q.
,
Li
,
Y.
,
Arinez
,
J.
, and
Xiao
,
G.
,
2016
, “
Implementing a Real-Time, Energy-Efficient Control Methodology to Maximize Manufacturing Profits
,”
IEEE Trans. Syst. Man Cybern.: Syst.
,
46
(
6
), pp.
855
866
.
23.
Hu
,
S.
,
Liu
,
F.
,
He
,
Y.
, and
Hu
,
T.
,
2012
, “
An On-Line Approach for Energy Efficiency Monitoring of Machine Tools
,”
J. Cleaner Prod.
,
27
, pp.
133
140
.
24.
Li
,
Y.
,
Chang
,
Q.
,
Xiao
,
G.
, and
Arinez
,
J.
,
2015
, “
Data-Driven Analysis of Downtime Impacts in Parallel Production Systems
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
4
), pp.
1541
1547
.
25.
Zou
,
J.
,
Arinez
,
J.
,
Chang
,
Q.
, and
Lei
,
Y.
,
2016
, “
Opportunity Window for Energy Saving and Maintenance in Stochastic Production Systems
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121009
.
26.
Cheng
,
S. C.
,
Shiau
,
D. F.
,
Huang
,
Y. M.
, and
Lin
,
Y. T.
,
2009
, “
Dynamic Hard-Real-Time Scheduling Using Genetic Algorithm for Multiprocessor Task With Resource and Timing Constraints
,”
Expert Syst. Appl.
,
36
(
1
), pp.
852
860
.
27.
Lee
,
K. Y.
, and
Mohamed
,
P. S.
,
2002
, “
A Real-Coded Genetic Algorithm Involving a Hybrid Crossover Method for Power Plant Control System Design
,”
Congress on Evolutionary Computation
(
CEC'02
), Honolulu, HI, May 12–17, pp.
1069
1074
.
28.
Rossi
,
A.
, and
Dini
,
G.
,
2000
, “
Dynamic Scheduling of FMS Using a Real-Time Genetic Algorithm
,”
Int. J. Prod. Res.
,
38
(
1
), pp.
1
20
.
29.
Ip
,
W. H.
,
Li
,
Y.
,
Man
,
K. F.
, and
Tang
,
K. S.
,
2000
, “
Multi-Product Planning and Scheduling Using Genetic Algorithm Approach
,”
Comput. Ind. Eng.
,
28
(
2
), pp.
283
296
.
30.
Mahdavi
,
I.
,
Paydar
,
M. M.
,
Solimanpur
,
M.
, and
Heidarzade
,
A.
,
2009
, “
Genetic Algorithm Approach for Solving a Cell Formation Problem in Cellular Manufacturing
,”
Expert Syst. Appl.
,
36
(
3
), pp.
6598
6604
.
31.
Chang
,
F. J.
, and
Chen
,
L.
,
1998
, “
Real-Coded Genetic Algorithm for Rule-Based Flood Control Reservoir Management
,”
Water Resour. Manage.
,
12
(
3
), pp.
185
198
.
32.
Tsai
,
S. C.
, and
Fu
,
S. Y.
,
2014
, “
Genetic-Algorithm-Based Simulation Optimization Considering a Single Stochastic Constraint
,”
Eur. J. Oper. Res.
,
236
(
1
), pp.
113
125
.
33.
Baldi
,
S.
,
Michailidis
,
I.
,
Kosmatopoulos
,
E. B.
, and
Ioannou
,
P. A.
,
2014
, “
A ‘Plug and Play’ Computationally Efficient Approach for Control Design of Large-Scale Nonlinear Systems Using Co-Simulation: A Combination of Two ‘Ingredients’
,”
IEEE Control Syst.
,
34
(
5
), pp.
56
71
.
34.
Baldi
,
S.
,
Michailidis
,
I.
,
Ravanis
,
C.
, and
Kosmatopoulos
,
E. B.
,
2015
, “
Model-Based and Model-Free ‘Plug-and-Play’ Building Energy Efficient Control
,”
Appl. Energy
,
154
, pp.
829
841
.
35.
Vamvoudakis
,
K.
,
Vrabie
,
D.
, and
Lewis
,
F.
,
2009
, “
Online Policy Iteration Based Algorithms to Solve the Continuous-Time Infinite Horizon Optimal Control Problem
,”
IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learning
, Nashville, TN, Mar. 30–Apr. 2
36.
Lewis
,
F. L.
,
Vrabie
,
D.
, and
Vamvoudakis
,
K. G.
,
2012
, “
Reinforcement Learning and Feedback Control: Using Natural Decision Methods to Design Optimal Adaptive Controllers
,”
IEEE Control Syst.
,
32
(
6
), pp.
76
105
.
37.
Friegerio
,
N.
, and
Matta
,
A.
,
2015
, “
Analysis of an Energy Oriented Switching Control of Production Lines
,”
Procedia CIRP
,
29
, pp.
34
39
.
You do not currently have access to this content.