The deficiency of temporal information in life cycle assessment (LCA) may misrepresent the environmental impacts of products throughout the life cycle or at a particular time in the future. For the environmental assessment of energy-consuming products, background data obtained from the LCA database fail to incorporate emissions or extractions reflecting the future situation. To overcome this knowledge gap, we developed a system dynamics (SD) model to predict the evolution of energy structure in China till 2030 and further determined the time-varying emissions of unit electric power combined with the ecoinvent 3.1 database. Additionally, dynamic characterization factors (CFs) of global warming potential (GWP) were integrated into the life cycle impact assessment (LCIA). This study took the PCL803 large-scale centrifugal compressor as an illustrative example in which the temporal-dependent electricity was included in the dynamic life cycle inventory and the dynamic CFs of GWP were included in the LCIA. Environmental impacts were quantified and compared using the traditional and prospective LCA. Results indicated that the environmental burdens under the electricity variation were approximately 13% less than those of conventional LCA, and the GWP under dynamic CFs would be further reduced by 14.5%. The results confirmed that, when socio-economic progress, technical improvement, and dynamic CFs are not considered, the environmental assessment will lead to an overestimation of environmental loads. Therefore, the relevant time-varying parameters should be considered for accurate assessment.

References

References
1.
García-Gusano
,
D.
,
Garraín
,
D.
, and
Dufour
,
J.
,
2017
, “
Prospective Life Cycle Assessment of the Spanish Electricity Production
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
21
34
.
2.
Jolliet
,
O.
,
Saade-Sbeih
,
M.
,
Shaked
,
S.
,
Jolliet
,
A.
, and
Crettaz
,
P.
,
2016
,
Environmental Life Cycle Assessment
,
CRC Press
,
Boca Raton, FL
.
3.
Haapala
,
K. R.
,
Catalina
,
A. V.
,
Johnson
,
M. L.
, and
Sutherland
,
J. W.
,
2012
, “
Development and Application of Models for Steelmaking and Casting Environmental Performance
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051013
.
4.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.
5.
Hellweg
,
S.
,
Hofstetter
,
T. B.
, and
Hungerbuhler
,
K.
,
2003
, “
Discounting and the Environment Should Current Impacts Be Weighted Differently Than Impacts Harming Future Generations?
,”
Int. J. Life Cycle Assess.
,
8
(
1
), pp.
8
18
.
6.
Yuan
,
C.
,
Wang
,
E.
,
Zhai
,
Q.
, and
Yang
,
F.
,
2015
, “
Temporal Discounting in Life Cycle Assessment: A Critical Review and Theoretical Framework
,”
Environ. Impact Assess. Rev.
,
51
, pp.
23
31
.
7.
Yuan
,
C. Y.
,
Simon
,
R.
,
Mady
,
N.
, and
Dornfeld
,
D.
,
2009
, “
Embedded Temporal Difference in Life Cycle Assessment: Case Study on VW Golf A4 Car
,”
IEEE
International Symposium on Sustainable Systems and Technology
, Phoenix, AZ, May 18–20, pp.
1
6
.
8.
Levasseur
,
A.
,
Lesage
,
P.
, and
Margni
,
M.
,
2010
, “
Dynamic LCA and Its Application to Global Warming Impact Assessment
,”
Environ. Sci. Technol.
,
44
(
8
), pp.
3169
3174
.
9.
Levasseur
,
A.
,
Lesage
,
P.
,
Margni
,
M.
, and
Samson
,
R.
,
2013
, “
Biogenic Carbon and Temporary Storage Addressed With Dynamic Life Cycle Assessment
,”
J. Ind. Ecol.
,
17
(
1
), pp.
117
128
.
10.
Pinsonnault
,
A.
,
Lesage
,
P.
,
Levasseur
,
A.
, and
Samson
,
R.
,
2014
, “
Temporal Differentiation of Background Systems in LCA: Relevance of Adding Temporal Information in LCI Databases
,”
Int. J. Life Cycle Assess.
,
19
(
11
), pp.
1843
1853
.
11.
Walser
,
T.
,
Demou
,
E.
,
Lang
,
D. J.
, and
Hellweg
,
S.
,
2011
, “
Prospective Environmental Life Cycle Assessment of Nanosilver T-Shirts
,”
Environ. Sci. Technol.
,
45
(
10
), pp.
4570
4578
.
12.
Aryapratama
,
R.
, and
Janssen
,
M.
,
2017
, “
Prospective Life Cycle Assessment of Bio-Based Adipic Acid Production From Forest Residues
,”
J. Cleaner Prod.
,
164
, pp.
434
443
.
13.
Yang
,
J.
, and
Chen
,
B.
,
2014
, “
Global Warming Impact Assessment of a Crop Residue Gasification Project—A Dynamic LCA Perspective
,”
Appl. Energy
,
122
, pp.
269
279
.
14.
Su
,
S.
,
Li
,
X.
,
Zhu
,
Y.
, and
Lin
,
B.
,
2017
, “
Dynamic LCA Framework for Environmental Impact Assessment of Buildings
,”
Energy Build.
,
149
, pp.
310
320
.
15.
Collinge
,
W. O.
,
Landis
,
A. E.
,
Jones
,
A. K.
,
Schaefer
,
L. A.
, and
Bilec
,
M. M.
,
2013
, “
Dynamic Life Cycle Assessment: Framework and Application to an Institutional Building
,”
Int. J. Life Cycle Assess.
,
18
(
3
), pp.
538
552
.
16.
European Commission—Joint Research Centre—Institute for Environment and, and Sustainability
,
2010
, “
International Reference Life Cycle Data System (ILCD) Handbook—General Guide for Life Cycle Assessment—Detailed Guidance
,”
Publications Office of the European Union
,
Luxembourg
.
17.
Arvidsson
,
R.
,
Tillman
,
A.-M.
,
Sandén
,
B. A.
,
Janssen
,
M.
,
Nordelöf
,
A.
,
Kushnir
,
D.
, and
Molander
,
S.
,
2017
, “
Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA
,”
J. Ind. Ecol.
,
22
(
6
), pp.
1
9
.
18.
Zanghelini
,
G. M.
,
Cherubini
,
E.
,
Orsi
,
P.
, and
Soares
,
S. R.
,
2014
, “
Waste Management Life Cycle Assessment: The Case of a Reciprocating Air Compressor in Brazil
,”
J. Cleaner Prod.
,
70
, pp.
164
174
.
19.
Peng
,
S.
,
Li
,
T.
,
Dong
,
M.
,
Shi
,
J.
, and
Zhang
,
H.
,
2016
, “
Life Cycle Assessment of a Large-Scale Centrifugal Compressor: A Case Study in China
,”
J. Cleaner Prod.
,
139
, pp.
810
820
.
20.
Yao
,
L.
,
Liu
,
T.
,
Chen
,
X.
,
Mahdi
,
M.
, and
Ni
,
J.
,
2018
, “
An Integrated Method of Life-Cycle Assessment and System Dynamics for Waste Mobile Phone Management and Recycling in China
,”
J. Cleaner Prod.
,
187
, pp.
852
862
.
21.
Onat
,
N. C.
,
Kucukvar
,
M.
,
Tatari
,
O.
, and
Egilmez
,
G.
,
2016
, “
Integration of System Dynamics Approach Toward Deepening and Broadening the Life Cycle Sustainability Assessment Framework: A Case for Electric Vehicles
,”
Int. J. Life Cycle Assess.
,
21
(
7
), pp.
1009
1034
.
22.
Jiménez
,
P.
, and
Toledo
,
C.
,
2015
, “
System Dynamics Approach in LCA for PET-Renewable Raw Materials Impact
,”
Am. J. Oper. Res.
,
5
(
4
), pp.
307
316
.
23.
Wang
,
B.
,
Brême
,
S.
, and
Moon
,
Y. B.
,
2014
, “
Hybrid Modeling and Simulation for Complementing Lifecycle Assessment
,”
Comput. Ind. Eng.
,
69
, pp.
77
88
.
24.
Guinee
,
J. B.
,
Gorree
,
M.
,
Heijungs
,
R.
,
Huppes
,
G.
,
Kleijn
,
R.
,
Koning
,
A. D.
,
van Oers
,
L.
,
Sleeswijk
,
A. W.
,
Suh
,
S.
,
de Haes
,
H.
,
de Bruijn
,
H.
,
van Duin
,
R.
,
Huijbregts
,
M.
,
Lindeijer
,
E.
, and
Weidema
,
B. P.
,
2002
,
Handbook on Life Cycle Assessment—Operational Guide to the ISO Standards
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
25.
Arvidsson
,
R.
,
Kushnir
,
D.
,
Sanden
,
B. A.
, and
Molander
,
S.
,
2014
, “
Prospective Life Cycle Assessment of Graphene Production by Ultrasonication and Chemical Reduction
,”
Environ. Sci. Technol.
,
48
(
8
), pp.
4529
4536
.
26.
Marini
,
C.
, and
Blanc
,
I.
,
2014
, “
Towards Prospective Life Cycle Assessment: How to Identify Key Parameters Inducing Most Uncertainties in the Future? Application to Photovoltaic Systems Installed in Spain
,”
International Conference Proceedings on Computational Science and Its Applications (ICCSA)
, Guimarães, Portugal, June 30–July 3, pp.
691
706
.
27.
Lee
,
D. H.
,
Lee
,
D. J.
, and
Veziroglu
,
A.
,
2011
, “
Econometric Models for Biohydrogen Development
,”
Bioresour. Technol.
,
102
(
18
), pp.
8475
8483
.
28.
Wing
,
I. S.
,
2004
, “
Computable General Equilibrium Models and Their Use in Economy-Wide Policy Analysis: Everything You Ever Wanted to Know (But Were Afraid to Ask)
,” Joint Program on the Science and Policy of Global Change, MIT, Cambridge, MA, accessed Mar. 18, 2018, http://web.mit.edu/globalchange/www/MITJPSPGC_TechNote6.pdf
29.
Stasinopoulos
,
P.
,
Compston
,
P.
,
Newell
,
B.
, and
Jones
,
H. M.
,
2012
, “
A System Dynamics Approach in LCA to account for Temporal Effects—A Consequential Energy LCI of Car Body-in-Whites
,”
Int. J. Life Cycle Assess.
,
17
(
2
), pp.
199
207
.
30.
Liu
,
X.
,
Mao
,
G.
,
Ren
,
J.
,
Li
,
R. Y. M.
,
Guo
,
J.
, and
Zhang
,
L.
,
2015
, “
How Might China Achieve Its 2020 Emissions Target? A Scenario Analysis of Energy Consumption and CO2 Emissions Using the System Dynamics Model
,”
J. Cleaner Prod.
,
103
, pp.
401
410
.
31.
Du
,
L.
,
Li
,
X.
,
Zhao
,
H.
,
Ma
,
W.
, and
Jiang
,
P.
,
2018
, “
System Dynamic Modeling of Urban Carbon Emissions Based on the Regional National Economy and Social Development Plan: A Case Study of Shanghai City
,”
J. Cleaner Prod.
,
172
, pp.
1501
1513
.
32.
Feng
,
Y. Y.
,
Chen
,
S. Q.
, and
Zhang
,
L. X.
,
2013
, “
System Dynamics Modeling for Urban Energy Consumption and CO2 Emissions: A Case Study of Beijing, China
,”
Ecol. Modell.
,
252
(
1
), pp.
44
52
.
33.
Saavedra
,
M. M. R.
,
Cristiano
,
C. H.
, and
Francisco
,
F. G.
,
2018
, “
Sustainable and Renewable Energy Supply Chain: A System Dynamics Overview
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
247
259
.
34.
International Energy Agency
,
2016
,
World Energy Outlook 2016
,
Organization for Economic Co-operation and Development
,
Paris, France
.
35.
IEA
,
2015
, “
China, People's Republic of: Electricity and Heat for 2015
,” International Energy Agency, Paris, France, accessed Nov. 3, 2018, https://www.iea.org/statistics/statisticssearch/report/?country=CHINA&product =electricityandheat& year=2015
36.
Zhou
,
L.
,
2013
, “
Research on Key Indicators Selecting of Low-Carbon Benefit of Smart Grid and Its Evaluation Models
,” North China Electric Power University, Beijing, China.
37.
Liu
,
Q.
,
Lei
,
Q.
,
Xu
,
H.
, and
Yuan
,
J.
,
2018
, “
China's Energy Revolution Strategy Into 2030
,”
Resour. Conserv. Recycl.
,
128
, pp.
78
89
.
38.
Wu
,
J.
,
2016
, “
Development Prospect of Electric Power Industry During 2015–2030
,” China Electric Power Promotion Council, Beijing, China, accessed Mar. 18, 2018, http://www.chinapower.com.cn/informationzxbg/20160106/16229.html
39.
NDRC
,
2016
, “
Revolutionary Strategy of Energy Production and Consumption (2016–2030)
,” National Development and Reform Commission, Beijing, China, accessed Mar. 20, 2018, http://www.ndrc.gov.cn/fzgggz/fzgh/ghwb/gjjgh/201705/t20170517_847664.html
40.
NDRC
,
2016
, “
The 13th Five-Year Plan for the Development of Renewable Energy
,” National Development and Reform Commission, Beijing, China, accessed Mar. 20, 2018, http://www.ndrc.gov.cn/fzgggz/fzgh/ghwb/gjjgh/201706/t20170614_850910.html
41.
IRENA
,
2014
, “
Renewable Energy Prospects: China
,” International Renewable Energy Agency, Abu Dhabi, United Arab Emirates, accessed Mar. 20, 2018, http://www.irena.org/publications/2014/Nov/Renewable-Energy-Prospects-China
42.
IEA
,
2015
, “
Technology Roadmap: Nuclear Energy—Chinese Version
,” International Energy Agency, Paris, France, accessed Mar. 20, 2018, https://www.iea.org/publications/freepublications/publication/nuclear_cn.pdf
43.
IEA
,
2010
, “
Technology Roadmap: Solar Photovoltaic Energy—Foldout—Chinese Version
,” International Energy Agency, Paris, France, accessed Mar. 20, 2018, https://www.iea.org/publications/freepublications/publication/Technology Roadmap_ Solarphotovoltaicenergy_foldout_cn.pdf
44.
Wiser
,
R.
,
Jenni
,
K.
,
Seel
,
J.
,
Baker
,
E.
,
Hand
,
M.
,
Lantz
,
E.
, and
Smith
,
A.
,
2016
, “
Expert Elicitation Survey on Future Wind Energy Costs
,”
Nat. Energy
,
1
(
10
), p. 16135.
45.
Gutowski
,
T. G.
,
Sahni
,
S.
,
Boustani
,
A.
, and
Graves
,
S. C.
,
2011
, “
Remanufacturing and Energy Savings
,”
Environ. Sci. Technol.
,
45
(
10
), pp.
4540
4547
.
46.
IKE
, 2018, “
EBalance
,” Linkage, Chengdu, China
47.
IEA
,
2017
,
Renewables Information 2017: Overview
,
International Energy Agency
,
Paris, France
.
48.
Shah
,
V. P.
, and
Ries
,
R. J.
,
2009
, “
A Characterization Model With Spatial and Temporal Resolution for Life Cycle Impact Assessment of Photochemical Precursors in the United States
,”
Int. J. Life Cycle Assess.
,
14
(
4
), pp.
313
327
.
49.
van Zelm
,
R.
,
Huijbregts
,
M.
,
van Jaarsveld
,
H.
,
Reinds
,
G.
,
de Zwart
,
D.
,
Struijs
,
J.
, and
van de Meent
,
D.
,
2007
, “
Time Horizon Dependent Characterization Factors for Acidification
,”
Environ. Sci. Technol.
,
41
(
3
), pp.
922
927
.
50.
Kendall
,
A.
,
2012
, “
Time-Adjusted Global Warming Potentials for LCA and Carbon Footprints
,”
Int. J. Life Cycle Assess.
,
17
(
8
), pp.
1042
1049
.
51.
Solomon
,
S.
,
Qin
,
D.
,
Manning
,
M.
,
Chen
,
Z.
,
Marquis
,
M.
,
Averyt
,
K. B.
,
Tignor
,
M.
, and
Miller
,
H. L.
,
2007
,
Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
,
Cambridge University Press
,
Cambridge, UK
.
52.
State Statistics Bureau
, 2018, “Statistical Database,” National Bureau of Statistics of China, Beijing, China, http://www.stats.gov.cn/english/
You do not currently have access to this content.