Abstract

Low plasticity burnishing (LPB) has been extensively employed in aero-industry to enhance fatigue performance of machined components by introducing compressive residual stress. Effects of various parameters on the residual stress field induced by low plasticity burnishing have been investigated by many researchers. However, initial residual stresses induced by machining are one of the important factors which affect the residual stress regenerated by the LPB process. The present work aims to develop an analytical model which takes into account the initial residual stress and burnishing parameters to predict residual stress field of workpiece material Inconel 718 based on Hertz contact theory and elastic–plastic theory. Initial residual stress fields were produced by turning of Inconel 718 and were measured by using X-ray diffraction technique. Two types of material constitutive models such as the linear hardening model and isotropic–kinematic model were employed to describe the elastic–plastic behavior of workpiece material Inconel 718. An analytical study was performed to analyze the effect of the initial residual stress field and burnishing parameters on residual stress induced by low plastic burnishing. The results of analytical model were verified by conducting the LPB experiments on initial turned Inconel 718. The results showed that the shape and magnitude of the residual stress field obtained with considering the effect of initial residual stress field was in good accordance with experimental measurements.

References

References
1.
Prévey
P. S.
, and
Cammett
,
J. T.
,
2004
, “
The Influence of Surface Enhancement by Low Plasticity Burnishing on the Corrosion Fatigue Performance of AA7075-T6
,”
Int. J. Fatigue
,
226
(
9
), pp.
975
982
. 10.1016/j.ijfatigue.2004.01.010
2.
Seemikeri
,
C. Y.
,
Brahmankar
,
P. K.
, and
Mahagaonkar
,
S. B.
,
2008
, “
Low Plasticity Burnishing: An Innovative Manufacturing Method for Biomedical Applications
,”
ASME J. Manuf. Sci. Eng.
,
130
(
2
), p.
021008
. 10.1115/1.2896121
3.
Rodríguez
,
A.
,
López de Lacalle
,
L. N.
,
Celaya
,
A.
,
Lamikiz
,
A.
, and
Albizuri
,
J.
,
2012
, “
Surface Improvement of Shafts by the Deep Ball-Burnishing Technique
,”
Surf. Coat. Technol.
,
206
(
11–12
), pp.
2817
2824
. 10.1016/j.surfcoat.2011.11.045
4.
Salahshoor
,
M.
, and
Guo
,
Y. B.
,
2011
, “
Surface Integrity of Biodegradable Magnesium-Calcium Orthopedic Implant by Burnishing
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1888
1904
. 10.1016/j.jmbbm.2011.06.006
5.
Yuan
,
X.
,
Sun
,
Y.
,
Li
,
C.
, and
Liu
,
W.
,
2017
, “
Experimental Investigation Into the Effect of Low Plasticity Burnishing Parameters on the Surface Integrity of TA2
,”
Int. J. Adv. Manuf. Technol.
,
88
(
1–4
), pp.
1089
1099
. 10.1007/s00170-016-8838-3
6.
Sayahi
,
M.
,
Sghaier
,
S.
, and
Belhadjsalah
,
H.
,
2013
, “
Finite Element Analysis of Ball Burnishing Process: Comparisons Between Numerical Results and Experiments
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1665
1673
. 10.1007/s00170-012-4599-9
7.
Sartkulvanich
,
P.
,
Altan
,
T.
,
Jasso
,
F.
, and
Rodriguez
,
C.
,
2007
, “
Finite Element Modeling of Hard Roller Burnishing: An Analysis on the Effects of Process Parameters Upon Surface Finish and Residual Stresses
,”
ASME J. Manuf. Sci. Eng.
,
129
(
4
), pp.
705
716
. 10.1115/1.2738121
8.
Revankar
,
G. D.
,
Shetty
,
R.
,
Rao
,
S. S.
, and
Gaitonde
,
V. N.
,
2017
, “
Wear Resistance Enhancement of Titanium Alloy (Ti-6Al-4V) by Ball Burnishing Process
,”
J. Mater. Res. Technol.
,
6
(
1
), pp.
13
32
. 10.1016/j.jmrt.2016.03.007
9.
Luo
,
H.
,
Liu
,
J.
,
Wang
,
L.
, and
Zhong
,
Q.
,
2006
, “
Study of the Mechanism of the Burnishing Process With Cylindrical Polycrystalline Diamond Tools
,”
J. Mater. Process. Technol.
,
180
(
1–3
), pp.
9
16
. 10.1016/j.jmatprotec.2005.03.041
10.
Li
,
F. L.
,
Xia
,
W.
,
Zhou
,
Z. Y.
,
Zhao
,
J.
, and
Tang
,
Z. Q.
,
2012
, “
Analytical Prediction and Experimental Verification of Surface Roughness During the Burnishing Process
,”
Int. J. Mach. Tools. Manuf.
,
62
, pp.
67
75
. 10.1016/j.ijmachtools.2012.06.001
11.
Hiegemann
,
L.
,
Weddeling
,
C.
,
Khalifa
,
N. B.
, and
Tekkaya
,
A. E.
,
2015
, “
Prediction of Roughness After Ball Burnishing of Thermally Coated Surfaces
,”
J. Mater. Process. Technol.
,
217
, pp.
193
201
. 10.1016/j.jmatprotec.2014.11.008
12.
Teimouri
,
R.
, and
Amini
,
S.
,
2019
, “
Analytical Modeling of Ultrasonic Surface Burnishing Process: Evaluation of Through Depth Localized Strain
,”
Int. J. Mech. Sci.
,
151
, pp.
118
132
. 10.1016/j.ijmecsci.2018.11.008
13.
Mahmoudi
,
A. H.
,
Ghasemi
,
A.
,
Farrahi
,
G. H.
, and
Sherafatnia
,
K.
,
2016
, “
A Comprehensive Experimental and Numerical Study on Redistribution of Residual Stresses by Shot Peening
,”
Mater. Design
,
90
, pp.
478
487
. 10.1016/j.matdes.2015.10.162
14.
Bhushan
,
B.
,
1999
,
Principles and Applications of Tribology
,
1st ed.
,
Wiley
,
New York
.
15.
Li
,
F. L.
,
Xia
,
W.
, and
Zhou
,
Z. Y.
,
2010
, “
Finite Element Calculation of Residual Stress and Cold-Work Hardening Induced in Inconel 718 by Low Plasticity Burnishing
,”
2010 3rd International Conference on Information and Computing, in the Proceedings of IEEE
,
Wuxi, China
,
June 4–6
, Vol.
2
, pp.
175
178
.
16.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
1st ed.
,
Cambridge University Press
,
Cambridge
.
17.
Li
,
J. K.
,
Mei
,
Y.
,
Duo
,
W.
, and
Renzhi
,
W.
,
1991
, “
Mechanical Approach to the Residual Stress Field Induced by Shot Peening
,”
Mater. Sci. Eng., A
,
147
(
2
), pp.
167
173
. 10.1016/0921-5093(91)90843-C
18.
Shen
,
S.
, and
Atluri
,
S. N.
,
2006
, “
An Analytical Model for Shot-Peening Induced Residual Stresses
,”
Comput. Mater. Contin.
,
4
(
2
), pp.
75
85
.
19.
Klotz
,
T.
,
Blas
,
S.
,
Lévesque
,
M.
, and
Brochu
,
M.
,
2017
, “
1D Cyclic Yield Model Independent of Load Spectrum Characteristics and its Application to Inconel 718
,”
Mech. Mater.
,
109
, pp.
34
41
. 10.1016/j.mechmat.2017.03.011
20.
Dunne
,
F.
, and
Petrinic
,
N.
,
2005
,
Introduction to Computational Plasticity
,
1st ed.
,
Oxford University Press
,
Oxford
.
21.
Franchim
,
A. S.
,
de Campos
,
V. S.
,
Travessa
,
D. N.
, and
de Moura Neto
,
C.
,
2009
, “
Analytical Modelling for Residual Stresses Produced by Shot Peening
,”
Mater. Des.
,
30
(
5
), pp.
1556
1560
. 10.1016/j.matdes.2008.07.040
22.
Huang
,
X. D.
,
Zhang
,
X. M.
, and
Ding
,
H.
,
2016
, “
A Novel Relaxation-Free Analytical Method for Prediction of Residual Stress Induced by Mechanical Load During Orthogonal Machining
,”
Int. J. Mech. Sci.
,
115–116
, pp.
299
309
. 10.1016/j.ijmecsci.2016.06.024
23.
Huang
,
X. D.
,
Zhang
,
X. M.
,
Leopold
,
J.
, and
Ding
,
H.
,
2018
, “
Analytical Model for Prediction of Residual Stress in Dynamic Orthogonal Cutting Process
,”
ASME J. Manuf. Sci. Eng
,
140
(
1
), p.
011002
. 10.1115/1.4037424
24.
Hua
,
Y.
, and
Liu
,
Z.
,
2018
, “
Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718
,”
Materials
,
11
(
6
), p.
879
. 10.3390/ma11060879
25.
Miao
,
H. Y.
,
Larose
,
S.
,
Perron
,
C.
, and
Lévesque
,
M.
,
2010
, “
An Analytical Approach to Relate Shot Peening Parameters to Almen Intensity
,”
Surf. Coat. Technol.
,
205
(
7
), pp.
2055
2066
. 10.1016/j.surfcoat.2010.08.105
26.
Kattoura
,
M.
,
Mannava
,
S. R.
,
Dong
,
Q.
, and
Vasudevan
,
V. K.
,
2017
, “
Effect of Laser Shock Peening on Residual Stress, Microstructure and Fatigue Behavior of ATI 718plus Alloy
,”
Int. J. Fatigue
,
102
, pp.
121
134
. 10.1016/j.ijfatigue.2017.04.016
27.
Mhaede
,
M.
,
2012
, “
Influence of Surface Treatments on Surface Layer Properties, Fatigue and Corrosion Fatigue Performance of AA7075-T73
,”
Mater. Design
,
41
, pp.
61
65
. 10.1016/j.matdes.2012.04.056
28.
Chomienne
,
V.
,
Valiorgue
,
F.
,
Rech
,
J.
, and
Verdu
,
C.
,
2016
, “
Influence of Ball Burnishing on Residual Stress Profile of a 15-5PH Stainless Steel
,”
CIRP J. Manuf. Sci. Technol.
,
13
, pp.
90
96
. 10.1016/j.cirpj.2015.12.003
29.
Teimouri
,
R.
,
Amini
,
S.
, and
Guagliano
,
M.
,
2019
, “
Analytical Modeling of Ultrasonic Surface Burnishing Process: Evaluation of Residual Stress Field Distribution and Strip Deflection
,”
Mater. Sci. Eng. A
,
747
, pp.
208
224
. 10.1016/j.msea.2019.01.007
You do not currently have access to this content.