Abstract

This paper describes a reverse engineering solution for modeling the behavior of non-standard edge geometry endmills. Structured light scanning is used to produce a solid model of the endmill and spatial coordinates for the points that define the cutting edges that are extracted. These points are then used to determine the cutting edge radius and angle at equally spaced points along the tool's axis. This cutting edge geometry is applied directly in a time domain simulation that predicts the cutting force and tool/workpiece deflection for user-selected operating parameters. A good agreement between predicted and measured cutting forces is first demonstrated for two non-standard edge geometry endmills. Second, the results of stability tests are compared with simulation predictions for multiple spindle speed-axial depth of cut combinations using one of the endmills. The time records are analyzed by periodically sampling the measured and predicted displacement and velocity. Third, the time domain simulation is used to generate a stability map that separately identifies stable (forced vibration) behavior, secondary Hopf bifurcations, and period-n bifurcations.

References

References
1.
Schmitz
,
T. L.
, and
Smith
,
K. S.
,
2009
,
Machining Dynamics: Frequency Response to Improved Productivity
,
Springer
,
New York, NY
.
2.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge
.
3.
Altintas
,
Y.
, and
Weck
,
M.
,
2004
, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Ann. Manuf. Technol.
,
53
(
2
), pp.
619
642
. 10.1016/S0007-8506(07)60032-8
4.
Wang
,
J.-J.
, and
Yang
,
C. S.
,
2003
, “
Angle and Frequency Force Models for a Roughing End Mill With a Sinusoidal Edge Profile
,”
Int. J. Mach. Tools Manuf.
,
43
(
14
), pp.
1509
1520
. 10.1016/S0890-6955(03)00163-9
5.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2004
, “
Mechanics and Dynamics of Serrated Cylindrical and Tapered End Mills
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
317
326
. 10.1115/1.1644552
6.
Dombovari
,
Z.
,
Altintas
,
Y.
, and
Stepan
,
G.
,
2010
, “
The Effect of Serration on Mechanics and Stability of Milling Cutters
,”
Int. J. Mach. Tools Manuf.
,
50
(
6
), pp.
511
520
. 10.1016/j.ijmachtools.2010.03.006
7.
Dombovari
,
Z.
,
Munoa
,
J.
, and
Stepan
,
G.
,
2012
, “
General Milling Stability Model for Cylindrical Tools
,”
Procedia CIRP
,
4
, pp.
90
97
. 10.1016/j.procir.2012.10.017
8.
Stepan
,
G.
,
Munoa
,
J.
,
Insperger
,
T.
,
Surico
,
M.
,
Bachrathy
,
D.
, and
Dombovari
,
Z.
,
2014
, “
Cylindrical Milling Tools: Comparative Real Case Study for Process Stability
,”
CIRP Ann. Manuf. Technol.
,
63
(
1
), pp.
385
388
. 10.1016/j.cirp.2014.03.137
9.
Koca
,
R.
, and
Budak
,
E.
,
2013
, “
Optimization of Serrated Mills for Reduced Cutting Energy and Higher Stability
,”
Procedia CIRP
,
8
, pp.
570
575
. 10.1016/j.procir.2013.06.152
10.
Grabowski
,
R.
,
Denkena
,
B.
, and
Köhler
,
J.
,
2014
, “
Prediction of Process Forces and Stability of end Mills With Complex Geometries
,”
Procedia CIRP
,
14
, pp.
119
124
. 10.1016/j.procir.2014.03.101
11.
Tehranizadeh
,
F.
, and
Budak
,
E.
,
2017
, “
Design of Serrated end Mills for Improved Productivity
,”
Procedia CIRP
,
58
, pp.
493
498
. 10.1016/j.procir.2017.03.256
12.
Comak
,
A.
, and
Budak
,
E.
,
2017
, “
Modeling Dynamics and Stability of Variable Pitch and Helix Milling Tools for Development of a Design Method to Maximize Chatter Stability
,”
Precis. Eng.
,
47
, pp.
459
468
. 10.1016/j.precisioneng.2016.09.021
13.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
CIRP Ann.
,
65
(
2
), pp.
785
808
. 10.1016/j.cirp.2016.06.004
14.
Smith
,
K. S.
, and
Tlusty
,
J.
,
1991
, “
An Overview of Modeling and Simulation of the Milling Process
,”
ASME J. Eng. Ind.
,
113
(
2
), pp.
169
175
. 10.1115/1.2899674
15.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2016
, “
A New Metric for Automated Stability Identification in Time Domain Milling Simulation
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
074501
. 10.1115/1.4032586
16.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2017
, “
Milling Stability Interrogation by Subharmonic Sampling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041009
. 10.1115/1.4034894
You do not currently have access to this content.