Abstract

Part design and process parameters directly influence the instantaneous spatiotemporal distribution of temperature in parts made using additive manufacturing (AM) processes. The temporal evolution of temperature in AM parts is termed herein as the thermal profile or thermal history. The thermal profile of the part, in turn, governs the formation of defects, such as porosity and shape distortion. Accordingly, the goal of this work is to understand the effect of the process parameters and the geometry on the thermal profile in AM parts. As a step toward this goal, the objectives of this work are two-fold. First, to develop and apply a finite element-based framework that captures the transient thermal phenomena in the fused filament fabrication (FFF) additive manufacturing of acrylonitrile butadiene styrene (ABS) parts. Second, validate the model-derived thermal profiles with experimental in-process measurements of the temperature trends obtained under different material deposition speeds. In the specific context of FFF, this foray is the critical first-step toward understanding how and why the thermal profile directly affects the degree of bonding between adjacent roads (linear track of deposited material), which in turn determines the strength of the part, as well as, propensity to form defects, such as delamination. From the experimental validation perspective, we instrumented a Hyrel Hydra FFF machine with three non-contact infrared temperature sensors (thermocouples) located near the nozzle (extruder) of the machine. These sensors measure the surface temperature of a road as it is deposited. Test parts are printed under three different settings of feed rate, and subsequently, the temperature profiles acquired from the infrared thermocouples are juxtaposed against the model-derived temperature profiles. Comparison of the experimental and model-derived thermal profiles confirms a high degree of correlation therein, with a mean absolute percentage error less than 6% (root mean squared error <6 °C). This work thus presents one of the first efforts in validating thermal profiles in FFF via direct in situ measurement of the temperature. In our future work, we will focus on predicting defects, such as delamination and inter-road porosity based on the thermal profile.

References

References
1.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
389
405
. 10.1007/s00170-015-7576-2
2.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
Trans. ASME, J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
. 10.1115/1.4028725
3.
Knapp
,
G. L.
,
Mukherjee
,
T.
,
Zuback
,
J. S.
,
Wei
,
H. L.
,
Palmer
,
T. A.
,
De
,
A.
, and
DebRoy
,
T.
,
2017
, “
Building Blocks for a Digital Twin of Additive Manufacturing
,”
Acta Mater.
,
135
, pp.
390
399
. 10.1016/j.actamat.2017.06.039
4.
DebRoy
,
T.
,
Zhang
,
W.
,
Turner
,
J.
, and
Babu
,
S. S.
,
2017
, “
Building Digital Twins of 3D Printing Machines
,”
Scr. Mater.
,
135
, pp.
119
124
. 10.1016/j.scriptamat.2016.12.005
5.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies—Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
Boston, MA
.
6.
ASTM
,
2012
,
F42—Standard Terminology for Additive Manufacturing Technologies
,
ASTM International
. 10.1520/F2792-12A
7.
Bellehumeur
,
C.
,
Li
,
L.
,
Sun
,
Q.
, and
Gu
,
P.
,
2004
, “
Modeling of Bond Formation Between Polymer Filaments in the Fused Deposition Modeling Process
,”
J. Manuf. Processes
,
6
(
2
), pp.
170
178
. 10.1016/S1526-6125(04)70071-7
8.
Duty
,
C. E.
,
Kunc
,
V.
,
Compton
,
B.
,
Post
,
B.
,
Erdman
,
D.
,
Smith
,
R.
,
Lind
,
R.
,
Lloyd
,
P.
, and
Love
,
L.
,
2017
, “
Structure and Mechanical Behavior of Big Area Additive Manufacturing (BAAM) Materials
,”
Rapid Prototyping J.
,
23
(
1
), pp.
181
189
. 10.1108/RPJ-12-2015-0183
9.
Khoshnevis
,
B.
,
2004
, “
Automated Construction by Contour Crafting—Related Robotics and Information Technologies
,”
Automation Construction
,
13
(
1
), pp.
5
19
. 10.1016/j.autcon.2003.08.012
10.
Talagani
,
M.
,
DorMohammadi
,
S.
,
Dutton
,
R.
,
Godines
,
C.
,
Baid
,
H.
,
Abdi
,
F.
,
Kunc
,
V.
,
Compton
,
B.
,
Simunovic
,
S.
, and
Duty
,
C.
,
2015
, “
Numerical Simulation of Big Area Additive Manufacturing (3D Printing) of a Full Size car
,”
SAMPE J.
,
51
(
4
), pp.
27
36
.
11.
Turner
,
B.
,
Strong
,
R.
, and
Gold
,
S.
,
2014
, “
A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling
,”
Rapid Prototyping J.
,
20
(
3
), pp.
192
204
. 10.1108/RPJ-01-2013-0012
12.
Turner
,
B. N.
, and
Gold
,
S. A.
,
2015
, “
A Review of Melt Extrusion Additive Manufacturing Processes: II. Materials, Dimensional Accuracy, and Surface Roughness
,”
Rapid Prototyping J.
,
21
(
3
), pp.
250
261
. 10.1108/RPJ-02-2013-0017
13.
Yardimci
,
M. A.
,
Hattori
,
T.
,
Guceri
,
S. I.
, and
Danforth
,
S.
,
1997
, “
Thermal Analysis of Fused Deposition
,”
Proceedings of Solid Freeform Fabrication Conference
,
University of Texas, TX
,
Aug. 11–13
, pp.
689
698
.
14.
Atif Yardimci
,
M.
, and
and Güçeri
,
S.
,
1996
, “
Conceptual Framework for the Thermal Process Modelling of Fused Deposition
,”
Rapid Prototyping J.
,
2
(
2
), pp.
26
31
. 10.1108/13552549610128206
15.
Rodríguez
,
J. F.
,
Thomas
,
J. P.
, and
Renaud
,
J. E.
,
2001
, “
Mechanical Behavior of Acrylonitrile Butadiene Styrene (ABS) Fused Deposition Materials. Experimental Investigation
,”
Rapid Prototyping J.
,
7
(
3
), pp.
148
158
. 10.1108/13552540110395547
16.
Zhang
,
Y.
, and
Chou
,
Y.
,
2006
, “
Three-Dimensional Finite Element Analysis Simulations of the Fused Deposition Modelling Process
,”
Proc. Inst. Mech. Eng. B
,
220
(
10
), pp.
1663
1671
. 10.1243/09544054JEM572
17.
Zhang
,
Y.
, and
Chou
,
K.
,
2008
, “
A Parametric Study of Part Distortions in Fused Deposition Modelling Using Three-Dimensional Finite Element Analysis
,”
Proc. Inst. Mech. Eng. B
,
222
(
8
), pp.
959
968
. 10.1243/09544054JEM990
18.
Li
,
L.
,
2002
,
Analysis and Fabrication of FDM Prototypes with Locally Controlled Properties
,
University of Calgary
,
Calgary
.
19.
Rodr
í
guez
,
M. J.
(
2000
). “
Modeling the Mechanical Behavior of Fused Deposition Acrylonitrile-Butadiene-Styrene Polymer Components
,” Ph.D. thesis,
University of Notre Dame
, p.
396
.
20.
Costa
,
S.
,
Duarte
,
F.
, and
Covas
,
J.
,
2015
, “
Thermal Conditions Affecting Heat Transfer in FDM/FFE: A Contribution Towards the Numerical Modelling of the Process: This Paper Investigates Convection, Conduction and Radiation Phenomena in the Filament Deposition Process
,”
Virtual Phys. Prototyping
,
10
(
1
), pp.
35
46
. 10.1080/17452759.2014.984042
21.
Patil
,
N.
,
Pal
,
D.
,
Khalid Rafi
,
H.
,
Zeng
,
K.
,
Moreland
,
A.
,
Hicks
,
A.
,
Beeler
,
D.
, and
Stucker
,
B.
,
2015
, “
A Generalized Feed Forward Dynamic Adaptive Mesh Refinement and Derefinement Finite Element Framework for Metal Laser Sintering—Part I: Formulation and Algorithm Development
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
041001
. 10.1115/1.4030059
22.
Pal
,
D.
,
Patil
,
N.
,
Kutty
,
K. H.
,
Zeng
,
K.
,
Moreland
,
A.
,
Hicks
,
A.
,
Beeler
,
D.
, and
Stucker
,
B.
,
2016
, “
A Generalized Feed-Forward Dynamic Adaptive Mesh Refinement and Derefinement Finite-Element Framework for Metal Laser Sintering—Part II: Nonlinear Thermal Simulations and Validations 2
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061003
. 10.1115/1.4032078
23.
Olleak
,
A.
, and
Xi
,
Z.
,
2018
, “
Finite Element Modeling of the Selective Laser Melting Process for Ti-6Al-4V
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 13–15
.
24.
Zeng
,
K.
,
Pal
,
D.
,
Gong
,
H.
,
Patil
,
N.
, and
Stucker
,
B.
,
2015
, “
Comparison of 3DSIM Thermal Modelling of Selective Laser Melting Using new Dynamic Meshing Method to ANSYS
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
945
956
. 10.1179/1743284714Y.0000000703
25.
Gouge
,
M.
,
Michaleris
,
P.
,
Denlinger
,
E.
, and
Irwin
,
J.
,
2018
, “The Finite Element Method for the Thermo-Mechanical Modeling of Additive Manufacturing Processes,”
Thermo-Mechanical Modeling of Additive Manufacturing
,
M.
Gouge
and
P.
Michaleris
, eds.,
Butterworth-Heinemann
,
Amsterdam
, pp.
19
38
.
26.
Yavari
,
M. R.
,
Cole
,
K. D.
, and
Rao
,
P.
,
2019
, “
Thermal Modeling in Metal Additive Manufacturing Using Graph Theory
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071007
. 10.1115/1.4043648
27.
Yavari
,
M. R.
,
Cole
,
K. D.
, and
Rao
,
P. K.
,
2019
, “
Design Rules for Additive Manufacturing–Understanding the Fundamental Thermal Phenomena to Reduce Scrap
,”
Proc. Manuf.
,
33
, pp.
375
382
. 10.1016/j.promfg.2019.04.046
28.
Bukkapatnam
,
S.
, and
Clark
,
B.
,
2007
, “
Dynamic Modeling and Monitoring of Contour Crafting—An Extrusion-Based Layered Manufacturing Process
,”
Trans. ASME, J. Manuf. Sci. Eng.
,
129
(
1
), pp.
135
142
. 10.1115/1.2375137
29.
Fang
,
T.
,
Bakhadyrov
,
I.
,
Jafari
,
M. A.
, and
Alpan
,
G.
,
1998
, “
Online Detection of Defects in Layered Manufacturing
,”
IEEE International Conference on Robotics and Automation
,
Leuven, Belgium
,
May 20
,
IEEE
,
Silverspring, MD
, pp.
254
259
.
30.
Cheng
,
Y.
, and
Jafari
,
M. A.
,
2008
, “
Vision-Based Online Process Control in Manufacturing Applications
,”
IEEE Trans. Automation Sci. Eng.
,
5
(
1
), pp.
140
153
. 10.1109/TASE.2007.912058
31.
He
,
K.
,
Wang
,
H.
, and
Hu
,
H.
,
2018
, “
Approach to Online Defect Monitoring in Fused Deposition Modeling Based on the Variation of the Temperature Field
,”
Complexity
,
2018
, p.
3426928
. 10.1155/2018/3426928
32.
Wu
,
H.
,
Yu
,
Z.
, and
Wang
,
Y.
,
2017
, “
Real-Time FDM Machine Condition Monitoring and Diagnosis Based on Acoustic Emission and Hidden Semi-Markov Model
,”
Int. J. Adv. Manuf. Technol.
,
90
(
5–8
), pp.
2027
2036
. 10.1007/s00170-016-9548-6
33.
Seppala
,
J. E.
, and
Migler
,
K. D.
,
2016
, “
Infrared Thermography of Welding Zones Produced by Polymer Extrusion Additive Manufacturing
,”
Addit. Manuf.
,
12
(
Part A
), pp.
71
76
. 10.1016/j.addma.2016.06.007
34.
Dinwiddie
,
R. B.
,
Love
,
L. J.
, and
Rowe
,
J. C.
,
2013
, “
Real-Time Process Monitoring and Temperature Mapping of a 3D Polymer Printing Process
,”
Thermosense: Thermal Infrared Applications XXXV
,
Baltimore, MD
,
May 22
,
International Society for Optics and Photonics
, p.
87050L
.
35.
Kousiatza
,
C.
, and
Karalekas
,
D.
,
2016
, “
In-Situ Monitoring of Strain and Temperature Distributions During Fused Deposition Modeling Process
,”
Mater. Des.
,
97
, pp.
400
406
. 10.1016/j.matdes.2016.02.099
36.
Bastien
,
L.
, and
Gillespie
J.
, Jr.
,
1991
, “
A Non-Isothermal Healing Model for Strength and Toughness of Fusion Bonded Joints of Amorphous Thermoplastics
,”
Polym. Eng. Sci.
,
31
(
24
), pp.
1720
1730
. 10.1002/pen.760312406
37.
Bathe
,
K.-J.
,
2006
,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
38.
Hughes
,
T. J.
,
2012
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover, Inc.
,
Mineola, NY
.
39.
Reddy
,
J. N.
, and
Gartling
,
D. K.
,
2010
,
The Finite Element Method in Heat Transfer and Fluid Dynamics
,
CRC Press
,
Boca Raton, FL
.
40.
Strang
,
G.
, and
Fix
,
G. J.
,
1973
,
An Analysis of the Finite Element Method
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
41.
Rao
,
P. K.
,
Liu
,
J.
,
Roberson
,
D.
,
Kong
,
Z.
, and
Williams
,
C.
,
2015
, “
Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061007
. 10.1115/1.4029823
You do not currently have access to this content.