Abstract

Spot welding is the predominant joining process for the sheet metal assemblies. The assemblies, during this process, are mainly bent and deformed. These deformations, along with the single part variations, are the primary sources of the aesthetic and functional geometrical problems in an assembly. The sequence of welding has a considerable effect on the geometrical variation of the final assembly. Finding the optimal weld sequence for the geometrical quality can be categorized as a combinatorial Hamiltonian graph search problem. Exhaustive search to find the optimum, using the finite element method simulations in the computer-aided tolerancing tools, is a time-consuming and thereby infeasible task. Applying the genetic algorithm to this problem can considerably reduce the search time, but finding the global optimum is not guaranteed, and still, a large number of sequences need to be evaluated. The effectiveness of these types of algorithms is dependent on the quality of the initial solutions. Previous studies have attempted to solve this problem by random initiation of the population in the genetic algorithm. In this paper, a rule-based approach for initiating the genetic algorithm for spot weld sequencing is introduced. The optimization approach is applied to three automotive sheet metal assemblies for evaluation. The results show that the proposed method improves the computation time and effectiveness of the genetic algorithm.

References

1.
Ding
,
Y.
,
Shi
,
J.
, and
Ceglarek
,
D.
,
2001
, “
Diagnosability Analysis of Multi-Station Manufacturing Processes
,”
J. Dyn. Syst. Meas. Control
,
124
(
1
), pp.
1
13
. 10.1115/1.1435645
2.
Mejia
,
D.
,
Moreno
,
A.
,
Arbelaiz
,
A.
,
Posada
,
J.
,
Ruiz-Salguero
,
O.
, and
Chopitea
,
R.
,
2017
, “
Accelerated Thermal Simulation for Three-Dimensional Interactive Optimization of Computer Numeric Control Sheet Metal Laser Cutting
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031006
. 10.1115/1.4038207
3.
Söderberg
,
R.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Carlson
,
J. S.
,
2016
, “
Virtual Geometry Assurance Process and Toolbox
,”
Procedia CIRP
,
43
, pp.
3
12
. 10.1016/j.procir.2016.02.043
4.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
. 10.1115/1.2831115
5.
Segeborn
,
J.
,
Carlson
,
J. S.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2011
, “
Evaluating Genetic Algorithms on Welding Sequence Optimization With Respect to Dimensional Variation and Cycle Time
,”
ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
,
Aug. 28–31
,
American Society of Mechanical Engineers
, pp.
697
704
.
6.
Tabar
,
R. S.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2018
, “
Evaluating Evolutionary Algorithms on Spot Welding Sequence Optimization With Respect to Geometrical Variation
,”
Procedia CIRP
,
75
, pp.
421
426
. 10.1016/j.procir.2018.04.061
7.
Söderberg
,
R.
,
Wärmefjord
,
K.
,
Carlson
,
J. S.
, and
Lindkvist
,
L.
,
2017
, “
Toward a Digital Twin for Real-Time Geometry Assurance in Individualized Production
,”
CIRP Ann.
,
66
(
1
), pp.
137
140
. 10.1016/j.cirp.2017.04.038
8.
Wärmefjord
,
K.
,
Söderberg
,
R.
,
Lindkvist
,
L.
,
Lindau
,
B.
, and
Carlson
,
J. S.
,
2017
, “
Inspection Data to Support a Digital Twin for Geometry Assurance
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol. 2: Advanced Manufacturing,
Tampa, FL
,
Nov. 3–9
, p.
V002T02A101
.
9.
Aderiani
,
A. R.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2018
, “
A Multistage Approach to the Selective Assembly of Components Without Dimensional Distribution Assumptions
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071015
. 10.1115/1.4039767
10.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Dahlström
,
S.
,
2006
, “
Computer-Aided Robustness Analysis for Compliant Assemblies
,”
J. Eng. Des.
,
17
(
5
), pp.
411
428
. 10.1080/09544820500275800
11.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
,
1996
, “
Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulation
,”
ASME J. Manuf. Sci. Eng.
,
118
(
3
), pp.
318
324
. 10.1115/1.2831031
12.
Yu
,
H.
,
Zhao
,
C.
, and
Lai
,
X.
,
2018
, “
Compliant Assembly Variation Analysis of Scalloped Segment Plates With a New Irregular Quadrilateral Plate Element Via ANCF
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091006
. 10.1115/1.4040323
13.
Yue
,
X.
,
Wen
,
Y.
,
Hunt
,
J. H.
, and
Shi
,
J.
,
2018
, “
Surrogate Model-Based Control Considering Uncertainties for Composite Fuselage Assembly
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041017
. 10.1115/1.4038510
14.
Huang
,
L.
,
Moraes
,
J. F. C.
,
Sediako
,
D. G.
,
Jordon
,
J. B.
,
Guo
,
H.
, and
Su
,
X.
,
2016
, “
Finite-Element and Residual Stress Analysis of Self-Pierce Riveting in Dissimilar Metal Sheets
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021007
. 10.1115/1.4034437
15.
Xi
,
L.
,
Banu
,
M.
,
Jack
,
H.
, and
Abell
,
J.
,
2016
, “
Performance Prediction for Ultrasonically Welded Dissimilar Materials Joints
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011008
. 10.1115/1.4033692
16.
Dahlström
,
S.
, and
Lindkvist
,
L.
,
2007
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
615
622
. 10.1115/1.2714570
17.
Lindau
,
B.
,
Lorin
,
S.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2016
, “
Efficient Contact Modeling in NonRigid Variation Simulation
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
1
), p.
011002
. 10.1115/1.4032077
18.
Xie
,
K.
,
Wells
,
L.
,
Camelio
,
J. A.
, and
Youn
,
B. D.
,
2007
, “
Variation Propagation Analysis on Compliant Assemblies Considering Contact Interaction
,”
ASME J. Manuf. Sci. Eng.
,
129
(
5
), pp.
934
942
. 10.1115/1.2752829
19.
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2010
, “
Variation Simulation of Spot Welding Sequence for Sheet Metal Assemblies
,”
Proceedings of NordDesign 2010 International Conference on Methods and Tools for Product and Production Development
, Vol. 2,
Gothenburg, Sweden
,
Aug. 25–27
, pp.
519
528
.
20.
Lorin
,
S.
, and
Lindau
,
B.
,
2018
, “
Efficient Variation Simulation of Spot-Welded Assemblies
,”
ASME 2018 International Mechanical Engineering Congress and Exposition
, Vol. 1,
Pittsburgh, PA
,
Nov. 9–15
, p.
V002T02A110
.
21.
Lorin
,
S.
,
Lindau
,
B.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2018
, “
Efficient Compliant Variation Simulation of Spot-Welded Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
011007
. 10.1115/1.4041706
22.
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2010
, “
Strategies for Optimization of Spot Welding Sequence With Respect to Geometrical Variation in Sheet Metal Assemblies
,”
ASME 2010 International Mechanical Engineering Congress and Exposition
,
Vancouver, British Columbia, Canada
,
Nov. 12–18
,
American Society of Mechanical Engineers
, pp.
569
577
.
23.
Tabar
,
R. S.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2019
, “
A Method for Identification and Sequence Optimisation of Geometry Spot Welds in a Digital Twin Context
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
10.1177/0954406219854466
24.
Xie
,
L. S.
, and
Hsieh
,
C.
,
2002
, “
Clamping and Welding Sequence Optimisation for Minimising Cycle Time and Assembly Deformation
,”
Int. J. Mater. Product Technol.
,
17
(
5–6
), pp.
389
399
. 10.1504/IJMPT.2002.005465
25.
Carlson
,
J. S.
,
Spensieri
,
D.
,
Wärmefjord
,
K.
,
Segeborn
,
J.
, and
Söderberg
,
R.
,
2014
, “
Minimizing Dimensional Variation and Robot Traveling Time in Welding Stations
,”
Procedia CIRP
,
23
, pp.
77
82
. 10.1016/j.procir.2014.03.199
26.
RD&T Technology AB
,
2017
,
RD&T Software Manual
,
R&DT Technology AB
,
Mölndal, Sweden
. http://www.rdnt.se
27.
Wärmefjord
,
K.
,
Söderberg
,
R.
,
Lindau
,
B.
,
Lindkvist
,
L.
, and
Lorin
,
S.
,
2016
, “Joining in Nonrigid Variation Simulation,”
Computer-Aided Technologies—Applications in Engineering and Medicine
,
R.
Udroiu
, ed.,
IntechOpen
.
28.
Bean
,
J. C.
,
1994
, “
Genetic Algorithms and Random Keys for Sequencing and Optimization
,”
ORSA J. Comput.
,
6
(
2
), pp.
154
160
. 10.1287/ijoc.6.2.154
29.
Huang
,
M.-W.
,
Hsieh
,
C. C.
, and
Arora
,
J. S.
,
1997
, “
A Genetic Algorithm for Sequencing Type Problems in Engineering Design
,”
Int. J. Numer. Methods Eng.
,
40
(
17
), pp.
3105
3115
. 10.1002/(ISSN)1097-0207
30.
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2013
, “
Simulation of the Effect of Geometrical Variation on Assembly and Holding Forces
,”
Int. J. Product Dev.
,
18
(
1
), pp.
88
108
. 10.1504/IJPD.2013.052184
You do not currently have access to this content.