Abstract

Electrically assisted forming (EAF) has been increasingly utilized as an effective auxiliary processing technology to improve the formability of hard-to-deform metals. Previous works have revealed that the phase transformation of titanium alloys subjected to electropulsing treatment (EPT) can occur at a lower temperature and in a remarkably shorter time compared with those subjected to the traditional heating treatment (THT). However, an in-depth experimental verification and further analysis is still missing so far. Therefore, to characterize the specific effects of EPT on α → β transformation process, both EPT and THT experiments were conducted on Ti–6Al–4V sheet specimens. After that, a calculation method based on the analysis of optical microscopic (OM) metallographs was developed to characterize the amount of phase transformation in EPT and THT. According to the results, it was found that the pulse current can significantly reduce the phase transus temperature and accelerate the transformation process in EPT compared with that in THT. Furthermore, the specific effects of EPT on transus temperature and phase transformation rate were investigated in detail. Based on that, the transformation kinetics of the electropulsing-induced α → β phase transformation was also analyzed using the Johnson–Mehl–Avrami model. It is revealed that the activation energies of both nucleation and growth of phase transformation are reduced by electric current. Hence, the phase transformation can start at a lower temperature and with a higher rate in EPT. The mechanism behind the effects was also discussed in detail in the present work.

References

References
1.
Peters
,
M.
,
Kumpfert
,
J.
,
Ward
,
C. H.
, and
Leyens
,
C.
,
2003
, “
Titanium Alloys for Aerospace Applications
,”
Adv. Eng. Mater.
,
5
(
6
), pp.
419
427
. 10.1002/adem.200310095
2.
Yamaguchi
,
T.
,
Morishita
,
H.
,
Iwase
,
S.
,
Yamada
,
S.
,
Furuta
,
T.
, and
Saito
,
T.
,
2000
, “
Development of P/M Titanium Engine Valves
,”
SAE Trans.
,
109
, pp.
416
424
. 10.4271/2000-01-0905
3.
Brunette
,
D. M.
,
Tengvall
,
P.
,
Textor
,
M.
, and
Thomsen
,
P.
,
2012
,
Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications
,
Springer Science & Business Media
,
Berlin, Germany
.
4.
Gould
,
B. D.
,
Ramamurti
,
R.
,
Osland
,
C. R.
, and
Swider-Lyons
,
K. E.
,
2014
, “
Assessing Fuel-Cell Coolant Flow Fields With Numerical Models and Infrared Thermography
,”
Int. J. Hydrogen Energy
,
39
(
26
), pp.
14061
14070
. 10.1016/j.ijhydene.2014.07.018
5.
Li
,
L. X.
,
Rao
,
K. P.
,
Lou
,
Y.
, and
Peng
,
D. S.
,
2002
, “
A Study on Hot Extrusion of Ti–6Al–4V Using Simulations and Experiments
,”
Int. J. Mech. Sci.
,
44
(
12
), pp.
2415
2425
. 10.1016/S0020-7403(02)00173-X
6.
Lin
,
Y. C.
, and
Chen
,
X.-M.
,
2011
, “
A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working
,”
Mater. Des.
,
32
(
4
), pp.
1733
1759
. 10.1016/j.matdes.2010.11.048
7.
Karbasian
,
H.
, and
Tekkaya
,
A. E.
,
2010
, “
A Review on Hot Stamping
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2103
2118
. 10.1016/j.jmatprotec.2010.07.019
8.
Lee
,
M.-G.
, and
Kim
,
S.-J.
,
2012
, “
Elastic-Plastic Constitutive Model for Accurate Springback Prediction in Hot Press Sheet Forming
,”
Met. Mater. Int.
,
18
(
3
), pp.
425
432
. 10.1007/s12540-012-3007-1
9.
Lefebvre
,
L.-P.
, and
Baril
,
E.
,
2013
, “
Properties of Titanium Foams for Biomedical Applications
,”
Adv. Eng. Mater.
,
15
(
3
), pp.
159
165
. 10.1002/adem.201200154
10.
Jiang
,
T.
,
Peng
,
L.
,
Yi
,
P.
, and
Lai
,
X.
,
2016
, “
Flow Behavior and Plasticity of Ti–6Al–4V Under Different Electrically Assisted Treatments
,”
Mater. Res. Express
,
3
(
12
), p.
126505
. 10.1088/2053-1591/3/12/126505
11.
Ruszkiewicz
,
B. J.
,
Grimm
,
T.
,
Ragai
,
I.
,
Mears
,
L.
, and
Roth
,
J. T.
,
2017
, “
A Review of Electrically-Assisted Manufacturing With Emphasis on Modeling and Understanding of the Electroplastic Effect
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
110801
. 10.1115/1.4036716
12.
Fan
,
G.
,
Gao
,
L.
,
Hussain
,
G.
, and
Wu
,
Z.
,
2008
, “
Electric Hot Incremental Forming: A Novel Technique
,”
Int. J. Mach. Tools Manuf.
,
48
(
15
), pp.
1688
1692
. 10.1016/j.ijmachtools.2008.07.010
13.
Li
,
C.
,
Jiang
,
S.
, and
Zhang
,
K.
,
2012
, “
Pulse Current-Assisted Hot-Forming of Light Metal Alloy
,”
Int. J. Adv. Manuf. Technol.
,
63
(
9–12
), pp.
931
938
. 10.1007/s00170-012-3934-5
14.
Mai
,
J.
,
Peng
,
L.
,
Lai
,
X.
, and
Lin
,
Z.
,
2013
, “
Electrical-Assisted Embossing Process for Fabrication of Micro-Channels on 316L Stainless Steel Plate
,”
J. Mater. Process. Technol.
,
213
(
2
), pp.
314
321
. 10.1016/j.jmatprotec.2012.09.013
15.
Ye
,
X.
,
Tang
,
G.
,
Song
,
G.
, and
Kuang
,
J.
,
2014
, “
Effect of Electropulsing Treatment on the Microstructure, Texture, and Mechanical Properties of Cold-Rolled Ti–6Al–4V Alloy
,”
J. Mater. Res.
,
29
(
14
), pp.
1500
1512
. 10.1557/jmr.2014.171
16.
Kim
,
M.-S.
,
Vinh
,
N. T.
,
Yu
,
H.-H.
,
Hong
,
S.-T.
,
Lee
,
H.-W.
,
Kim
,
M.-J.
,
Han
,
H. N.
, and
Roth
,
J. T.
,
2014
, “
Effect of Electric Current Density on the Mechanical Property of Advanced High Strength Steels Under Quasi-Static Tensile Loads
,”
Int. J. Precis. Eng.Manuf.
,
15
(
6
), pp.
1207
1213
. 10.1007/s12541-014-0458-y
17.
Xie
,
H.
,
Dong
,
X.
,
Ai
,
Z.
,
Wang
,
Q.
,
Peng
,
F.
,
Liu
,
K.
,
Chen
,
F.
, and
Wang
,
J.
,
2016
, “
Experimental Investigation on Electrically Assisted Cylindrical Deep Drawing of AZ31B Magnesium Alloy Sheet
,”
Int. J. Adv. Manuf. Technol.
,
86
(
1–4
), pp.
1063
1069
. 10.1007/s00170-015-8246-0
18.
Sánchez Egea
,
A. J.
,
González Rojas
,
H. A.
,
Celentano
,
D. J.
,
Jorba Perió
,
J.
, and
Cao
,
J.
,
2017
, “
Thermomechanical Analysis of an Electrically Assisted Wire Drawing Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111017
. 10.1115/1.4037798
19.
Ruszkiewicz
,
B. J.
,
Gendreau
,
E.
,
Niaki
,
F. A.
, and
Mears
,
L.
,
2018
, “
Electroplastic Drilling of Low- and High-Strength Steels
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061017
. 10.1115/1.4039648
20.
Machlin
,
E.
,
1959
, “
Applied Voltage and the Plastic Properties of`“Brittle” Rock Salt
,”
J. Appl. Phys.
,
30
(
7
), pp.
1109
1110
. 10.1063/1.1776988
21.
Trotskii
,
O.
, and
Likthman
,
V.
,
1963
, “
Joint Action of Mercury and Radioactive Emissions on Mechanical Properties of Single Zing Crystals
,”
Dokl. Akad. Nauk SSSR
,
148
, p.
332
.
22.
Troitskii
,
O.
,
1969
, “
Electromechanical Effect in Metals
,”
ZhETF Pisma Redaktsiiu
,
10
(
6
), p.
18
. 10.1103/PhysRevB.5.2107
23.
Andrawes
,
J. S.
,
Kronenberger
,
T. J.
,
Perkins
,
T. A.
,
Roth
,
J. T.
, and
Warley
,
R. L.
,
2007
, “
Effects of DC Current on the Mechanical Behavior of AlMg1SiCu
,”
Mater. Manuf. Processes
,
22
(
1
), pp.
91
101
. 10.1080/10426910601016004
24.
Ross
,
C. D.
,
Kronenberger
,
T. J.
, and
Roth
,
J. T.
,
2009
, “
Effect of DC on the Formability of Ti–6Al–4V
,”
ASME J. Eng. Mater. Technol.
,
131
(
3
), p.
031004
. 10.1115/1.3078307
25.
Dzialo
,
C. M.
,
Siopis
,
M. S.
,
Kinsey
,
B. L.
, and
Weinmann
,
K. J.
,
2010
, “
Effect of Current Density and Zinc Content During Electrical-Assisted Forming of Copper Alloys
,”
CIRP Ann.
,
59
(
1
), pp.
299
302
. 10.1016/j.cirp.2010.03.014
26.
Jiang
,
T.
,
Peng
,
L.
,
Yi
,
P.
, and
Lai
,
X.
,
2016
, “
Investigation of Deformation Behavior of SS304 and Pure Copper Subjected to Electrically Assisted Forming Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011004
. 10.1115/1.4033904
27.
Perkins
,
T. A.
,
Kronenberger
,
T. J.
, and
Roth
,
J. T.
,
2007
, “
Metallic Forging Using Electrical Flow as an Alternative to Warm/Hot Working
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
84
94
. 10.1115/1.2386164
28.
Salandro
,
W. A.
,
Bunget
,
C.
, and
Mears
,
L.
,
2011
, “
Thermo-Mechanical Investigations of the Electroplastic Effect
,”
ASME 2011 International Manufacturing Science and Engineering Conference
,
Corvallis, OR
,
June 13–17
,
American Society of Mechanical Engineers
,
New York
, pp.
573
582
.
29.
Green
,
C.
,
Mcneal
,
T.
,
Roth
,
J.
, and
Erie
,
P.
,
College
,
T. B.
, 2009. “
Springback Elimination for Al-6111 Alloys Using Electrically-Assisted Manufacturing (EAM)
,”
Transactions of the North American Manufacturing Research Institute of SME
, Vol.
37
, pp.
403
410
.
30.
Ruszkiewicz
,
B. J.
,
Scriva
,
C.
,
Reese
,
Z. C.
,
Nikhare
,
C. P.
,
Roth
,
J. T.
, and
Ragai
,
I.
,
2015
, “
Direct Electric Current Spot Treatment’s Effect on Springback of 90 Degree Bent 2024-T3 Aluminum
,”
ASME 2015 International Manufacturing Science and Engineering Conference
,
American Society of Mechanical Engineers
,
New York
, Paper No. V001T002A109.
31.
Xie
,
H.
,
Wang
,
Q.
,
Liu
,
K.
,
Peng
,
F.
,
Dong
,
X.
, and
Wang
,
J.
,
2015
, “
Investigation of Influence of Direct-Current Pulses on Springback During V-Bending of AZ31B Magnesium Alloy Sheet
,”
J. Mater. Process. Technol.
,
219
, pp.
321
327
. 10.1016/j.jmatprotec.2014.12.011
32.
Pei
,
C.
,
Fan
,
Q.
,
Cai
,
H.
, and
Li
,
J.
,
2010
, “
High Temperature Deformation Behavior of the TC6 Titanium Alloy Under the Uniform DC Electric Field
,”
J. Alloys Compd.
,
489
(
2
), pp.
401
407
. 10.1016/j.jallcom.2009.09.134
33.
Gao
,
L.
,
Liu
,
J.
,
Cheng
,
X.
,
Li
,
S.
,
Luo
,
Y.
, and
Guo
,
Q.
,
2014
, “
Effects of Short Time Electric Pulse Heat Treatment on Microstructures and Mechanical Properties of Hot-Rolled Ti–6Al–4V Alloy
,”
Mater. Sci. Eng., A
,
618
, pp.
104
111
. 10.1016/j.msea.2014.08.085
34.
Xu
,
Z. S.
, and
Chen
,
Y. X.
,
1988
, “
Effect of Electric Current on the Recrystallization Behavior of Cold Worked α-Ti
,”
Scr. Metall.
,
22
(
2
), pp.
187
190
. 10.1016/S0036-9748(88)80331-4
35.
Conrad
,
H.
,
2000
, “
Effects of Electric Current on Solid State Phase Transformations in Metals
,”
Mater. Sci. Eng., A
,
287
(
2
), pp.
227
237
. 10.1016/S0921-5093(00)00780-2
36.
Conrad
,
H.
,
2000
, “
Electroplasticity in Metals and Ceramics
,”
Mater. Sci. Eng., A
,
287
(
2
), pp.
276
287
. 10.1016/S0921-5093(00)00786-3
37.
Conrad
,
H.
,
2002
, “
Thermally Activated Plastic Flow of Metals and Ceramics With an Electric Field or Current
,”
Mater. Sci. Eng., A
,
322
(
1–2
), pp.
100
107
. 10.1016/S0921-5093(01)01122-4
38.
Yuryev
,
V. A.
,
Baranov
,
Y. V.
,
Stolyarov
,
V. V.
,
Shulga
,
V. A.
, and
Kostina
,
I. V.
,
2008
, “
Effect of Electroplastic Processing on the Structure of Aluminum-Lithium Alloy 1463
,”
Bull. Russ. Acad. Sci.: Phys.
,
72
(
9
), pp.
1248
1250
. 10.3103/S1062873808090220
39.
Jiang
,
Y.
,
Tang
,
G.
,
Shek
,
C.
,
Zhu
,
Y.
, and
Xu
,
Z.
,
2009
, “
On the Thermodynamics and Kinetics of Electropulsing Induced Dissolution of β-Mg17Al12 Phase in an Aged Mg–9Al–1Zn Alloy
,”
Acta Mater.
,
57
(
16
), pp.
4797
4808
. 10.1016/j.actamat.2009.06.044
40.
To
,
S.
,
Zhu
,
Y. H.
,
Lee
,
W. B.
,
Liu
,
X. M.
,
Jiang
,
Y. B.
, and
Tang
,
G. Y.
,
2009
, “
Effects of Current Density on Electropulsing-Induced Phase Transformations in a Zn–Al Based Alloy
,”
Appl. Phys. A
,
96
(
4
), pp.
939
944
. 10.1007/s00339-009-5100-y
41.
Zhu
,
Y.
,
To
,
S.
,
Lee
,
W. B.
,
Liu
,
X.
,
Jiang
,
Y.
, and
Tang
,
G.
,
2011
, “
Electropulsing-Induced Phase Transformations in a Zn–Al-Based Alloy
,”
J. Mater. Res.
,
24
(
8
), pp.
2661
2669
. 10.1557/jmr.2009.0300
42.
Zhu
,
Y.
,
To
,
S.
,
Liu
,
X.
,
Hu
,
G.
, and
Xu
,
Q.
,
2011
, “
Static Electropulsing-Induced Phase Transformations of a Cold-Deformed ZA27 Alloy
,”
J. Mater. Res.
,
26
(
14
), pp.
1696
1701
. 10.1557/jmr.2011.185
43.
Ye
,
X.
,
Tse
,
Z. T. H.
, and
Tang
,
G.
,
2014
, “
Mechanical Properties and Tensile Fracture of Ti–Al–V Alloy Strip Under Electropulsing-Induced Phase Change
,”
J. Mater. Res.
,
30
(
2
), pp.
206
223
. 10.1557/jmr.2014.367
44.
Ao
,
D.
,
Chu
,
X.
,
Yang
,
Y.
,
Lin
,
S.
, and
Gao
,
J.
,
2018
, “
Effect of Electropulsing Treatment on Microstructure and Mechanical Behavior of Ti-6Al-4V Alloy Sheet Under Argon Gas Protection
,”
Vacuum
,
148
, pp.
230
238
. 10.1016/j.vacuum.2017.11.017
45.
Brooks
,
C. R.
, and
Brooks
,
C. R.
,
1982
,
Heat Treatment, Structure and Properties of Nonferrous Alloys
,
American Society for Metals
,
Russell Township, Geauga County, OH
.
46.
Ahmed
,
T.
, and
Rack
,
H.
,
1998
, “
Phase Transformations During Cooling in α+ β Titanium Alloys
,”
Mater. Sci. Eng., A
,
243
(
1–2
), pp.
206
211
. 10.1016/S0921-5093(97)00802-2
47.
Semiatin
,
S.
,
Knisley
,
S.
,
Fagin
,
P.
,
Barker
,
D.
, and
Zhang
,
F.
,
2003
, “
Microstructure Evolution During Alpha-Beta Heat Treatment of Ti-6Al-4V
,”
Metall. Mater. Trans. A
,
34
(
10
), pp.
2377
2386
. 10.1007/s11661-003-0300-0
48.
Semiatin
,
S.
,
Fagin
,
P.
,
Glavicic
,
M.
,
Sukonnik
,
I.
, and
Ivasishin
,
O.
,
2001
, “
Influence on Texture on Beta Grain Growth During Continuous Annealing of Ti–6Al–4V
,”
Mater. Sci. Eng., A
,
299
(
1–2
), pp.
225
234
. 10.1016/S0921-5093(00)01371-X
49.
Zhang
,
W.
,
Wu
,
B.
,
Zhao
,
W. S.
,
Li
,
D. X.
, and
Sui
,
M. L.
,
2006
, “
Formation of Novel β-Ti Martensites in Ti–6Al–4V Under an Electric-Current-Pulse Heat Treatment
,”
Mater. Sci. Eng., A
,
438–440
, pp.
320
323
. 10.1016/j.msea.2005.12.067
50.
Elmer
,
J. W.
,
Palmer
,
T. A.
,
Babu
,
S. S.
,
Zhang
,
W.
, and
DebRoy
,
T.
,
2004
, “
Phase Transformation Dynamics During Welding of Ti–6Al–4V
,”
J. Appl. Phys.
,
95
(
12
), pp.
8327
8339
. 10.1063/1.1737476
51.
Elmer
,
J. W.
,
Palmer
,
T. A.
,
Babu
,
S. S.
, and
Specht
,
E. D.
,
2005
, “
In Situ Observations of Lattice Expansion and Transformation Rates of α and β Phases in Ti–6Al–4V
,”
Mater. Sci. Eng., A
,
391
(
1–2
), pp.
104
113
. 10.1016/j.msea.2004.08.084
52.
Fan
,
Y.
,
Cheng
,
P.
,
Yao
,
Y. L.
,
Yang
,
Z.
, and
Egland
,
K.
,
2005
, “
Effect of Phase Transformations on Laser Forming of Ti–6Al–4V Alloy
,”
J. Appl. Phys.
,
98
(
1
), p.
013518
. 10.1063/1.1944202
53.
Jovanović
,
M. T.
,
Tadić
,
S.
,
Zec
,
S.
,
Mišković
,
Z.
, and
Bobić
,
I.
,
2006
, “
The Effect of Annealing Temperatures and Cooling Rates on Microstructure and Mechanical Properties of Investment Cast Ti–6Al–4V Alloy
,”
Mater. Des.
,
27
(
3
), pp.
192
199
. 10.1016/j.matdes.2004.10.017
54.
Esmaily
,
M.
,
Nooshin Mortazavi
,
S.
,
Todehfalah
,
P.
, and
Rashidi
,
M.
,
2013
, “
Microstructural Characterization and Formation of α′ Martensite Phase in Ti–6Al–4V Alloy Butt Joints Produced by Friction Stir and Gas Tungsten Arc Welding Processes
,”
Mater. Des.
,
47
, pp.
143
150
. 10.1016/j.matdes.2012.12.024
55.
Gheysarian
,
A.
, and
Abbasi
,
M.
,
2016
, “
The Effect of Aging on Microstructure, Formability and Springback of Ti-6Al-4V Titanium Alloy
,”
J. Mater. Eng. Perform.
,
26
(
1
), pp.
374
382
. 10.1007/s11665-016-2431-7
56.
Johnson
,
W. A.
, and
Mehl
,
R. F.
,
1939
, “
Reaction Kinetics in Processes of Nucleation and Growth
,”
Trans. Am. Inst. Min., Metall. Pet. Eng.
,
135
, p.
416
.
57.
Avrami
,
M.
,
1939
, “
Kinetics of Phase Change. I General Theory
,”
J. Chem. Phys.
,
7
(
12
), pp.
1103
1112
. 10.1063/1.1750380
58.
Avrami
,
M.
,
1940
, “
Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei
,”
J. Chem. Phys.
,
8
(
2
), pp.
212
224
. 10.1063/1.1750631
59.
Avrami
,
M.
,
1941
, “
Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III
,”
J. Chem. Phys.
,
9
(
2
), pp.
177
184
. 10.1063/1.1750872
60.
Yang
,
Z.
,
Elmer
,
J.
,
Wong
,
J.
, and
DebRoy
,
T.
,
2000
, “
Evolution of Titanium Arc Weldment Macro and Microstructures-Modeling and Real Time Mapping of Phases
,”
Weld. J.
,
79
(
4
), p.
97
.
61.
Malinov
,
S.
,
Markovsky
,
P.
,
Sha
,
W.
, and
Guo
,
Z.
,
2001
, “
Resistivity Study and Computer Modelling of the Isothermal Transformation Kinetics of Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo–0.08 Si Alloys
,”
J. Alloys Compd.
,
314
(
1–2
), pp.
181
192
. 10.1016/S0925-8388(00)01227-5
62.
Porter
,
D. A.
,
Easterling
,
K. E.
, and
Sherif
,
M.
,
2009
,
Phase Transformations in Metals and Alloys (Revised Reprint)
,
3rd ed.
,
CRC Press
,
Boca Raton, FL
.
63.
Sprecher
,
A.
,
Mannan
,
S.
, and
Conrad
,
H.
,
1986
, “
Overview No. 49: On the Mechanisms for the Electroplastic Effect in Metals
,”
Acta Metall.
,
34
(
7
), pp.
1145
1162
. 10.1016/0001-6160(86)90001-5
64.
Gupta
,
R. P.
,
Serruys
,
Y.
,
Brebec
,
G.
, and
Adda
,
Y.
,
1983
, “
Calculation of the Effective Valence for Electromigration in Niobium
,”
Phys. Rev. B
,
27
(
2
), pp.
672
677
. 10.1103/PhysRevB.27.672
You do not currently have access to this content.