Abstract

This paper presents a novel application of intensity-based volume registration to manufacturing using voxel-based computer-aided manufacturing (CAM) models. The introduced techniques are presented in the context of machining irregularly shaped materials by integrating volumetric imaging feedback to computer numerical control (CNC) machine tools. This requires a comparison and alignment to be performed in the software to geometrically “fit” the source design model inside a rendered starting material. The requirements differ from many typical registration applications in that the workpiece will necessarily be larger (i.e., greater in volume) than the desired final computer-aided design (CAD) file. Therefore, models need to be aligned for toolpath generation to workpiece counterparts that have been either volumetrically offset or contain additional material/volume. Intensity-based registrations are unique in that they consider only the voxel values over the entire volume. Although advancements in medical imaging have produced efficient, robust voxel registration algorithms, these techniques have not yet been applied to manufacturing. This research introduces the use of maximization of mutual information (MMI) for voxel-based CAM to drive an alignment registration for systems integrating imaging technology. A simple but novel method, which the authors have named minimization of distance variance (MDV), is also introduced. This minimizes the variance between voxel intensities to demonstrate the design of a similarity metric for a simple case in machining rough castings.

References

References
1.
Yu
,
J.
,
Lynn
,
R.
,
Tucker
,
T.
,
Saldana
,
C.
, and
Kurfess
,
T.
,
2017
, “
Model-Free Subtractive Manufacturing From Computed Tomography Data
,”
Manufacturing Letters
,
13
, pp.
44
47
. 10.1016/j.mfglet.2017.06.004
2.
Zanini
,
F.
,
Sbettega
,
E.
, and
Carmignato
,
S.
,
2018
, “
X-Ray Computed Tomography for Metal Additive Manufacturing: Challenges and Solutions for Accuracy Enhancement
,”
Procedia CIRP
,
75
, pp.
114
118
. 10.1016/j.procir.2018.04.050
3.
Raguvarun
,
K.
,
Balasubramaniam
,
K.
,
Rajagopal
,
P.
,
Palanisamy
,
S.
,
Nagarajah
,
R.
,
Hoye
,
N.
,
Curiri
,
D.
, and
Kapoor
,
A.
,
2015
, “
A Study of Internal Structure in Components Made by Additive Manufacturing Process Using 3D X-Ray Tomography
,”
AIP Conf. Proc.
,
1650
(
1
), pp.
146
155
. 10.1063/1.4914604
4.
Boschert
,
S.
, and
Rosen
,
R.
,
2016
,
Mechatronic Futures
,
Springer
, pp.
59
74
.
5.
Knapp
,
G. L.
,
Mukherjee
,
T.
,
Zuback
,
J. S.
,
Wei
,
H. L.
,
Palmer
,
T. A.
,
De
,
A.
, and
Debroy
,
T.
,
2017
, “
Building Blocks for a Digital Twin of Additive Manufacturing
,”
Acta Mater.
,
135
(
C
), pp.
390
399
. 10.1016/j.actamat.2017.06.039
6.
Li
,
X.
,
Li
,
W.
,
Jiang
,
H.
, and
Zhao
,
H.
,
2013
, “
Automatic Evaluation of Machining Allowance of Precision Castings Based on Plane Features From 3D Point Cloud
,”
Comput. Ind.
,
64
(
9
), pp.
1129
1137
. 10.1016/j.compind.2013.06.003
7.
Suri
,
J.
,
Wilson
,
D.
, and
Laxminarayan
,
S.
,
2005
,
Handbook of Biomedical Image Analysis
, Vol.
3
,
Springer
.
8.
Lynn
,
R.
,
Dinar
,
M.
,
Huang
,
N.
,
Collins
,
J.
,
Yu
,
J.
,
Greer
,
C.
,
Tucker
,
T.
, and
Kurfess
,
T.
,
2018
, “
Direct Digital Subtractive Manufacturing of a Functional Assembly Using Voxel-Based Models
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
021006
. 10.1115/1.4037631
9.
Lynn
,
R.
,
Sati
,
M.
,
Tucker
,
T.
,
Rossignac
,
J.
,
Saldana
,
C.
, and
Kurfess
,
T.
,
2018
, “
Realization of the 5-Axis Machine Tool Digital Twin Using Direct Servo Control from CAM
,”
NIST Model-Based Enterprise Smmit
,
Gaithersburg, MD
,
Apr. 4
.
10.
Tarbutton
,
J.
,
Kurfess
,
T. R.
,
Tucker
,
T.
, and
Konobrytskyi
,
D.
,
2013
, “
Gouge-Free Voxel-Based Machining for Parallel Processors
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
1941
1953
. 10.1007/s00170-013-5148-x
11.
Lynn
,
R.
,
Contis
,
D.
,
Hossain
,
M.
,
Huang
,
N.
,
Tucker
,
T.
, and
Kurfess
,
T.
,
2017
, “
Voxel Model Surface Offsetting for Computer-Aided Manufacturing Using Virtualized High-Performance Computing
,”
J. Manuf. Syst.
,
43
, pp.
296
304
. 10.1016/j.jmsy.2016.12.005
12.
Hossain
,
M. M.
,
2016
, “
Voxel-Based Offsetting at High Resolution With Tunable Speed and Precision Using Hybrid Dynamic Trees
,”
Ph.D Thesis
,
Atlanta, GA
.
13.
Hossain
,
M. M.
,
Tucker
,
T. M.
,
Kurfess
,
T. R.
, and
Vuduc
,
R. W.
,
2016
, “
Hybrid Dynamic Trees for Extreme-Resolution 3D Sparse Data Modeling
,”
2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
, pp.
132
141
. 10.1109/IPDPS.2016.75
14.
Hossain
,
M. M.
,
Tucker
,
T. M.
,
Kurfess
,
T. R.
, and
Vuduc
,
R. W.
,
2015
, “
A GPU-Parallel Construction of Volumetric Tree
,”
Proceedings of the 5th Workshop on Irregular Applications Architectures and Algorithms – IA3 ’15
,
Austin, TX
,
Nov. 15
, pp.
1
4
.
15.
Gessner
,
A.
,
Staniek
,
R.
, and
Bartkowiak
,
T.
,
2015
, “
Computer-Aided Alignment of Castings and Machining Optimization
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
229
(
3
), pp.
485
492
. 10.1177/0954406214536380
16.
Kurokaiva
,
E.
,
1983
, “
Flexible Conformable Clamps for a Machining Cell with Applications to Turbine Blade Machining
,”
Carnegie-Mellon University
,
Pittsburgh, PA
, Robotics Institute Report, CMU-RI-TR-83/16.
17.
Byiringiro
,
J. B.
,
Kim
,
M. Y.
, and
Ko
,
T. J.
,
2012
, “
Process Modeling of Hybrid Machining System Consisted of Electro Discharge Machining and End Milling
,”
Int. J. Adv. Manuf. Technol.
,
61
(
9–12
), pp.
1247
1254
. 10.1007/s00170-012-4089-0
18.
Seidel
,
A.
,
Straubel
,
A.
,
Finaske
,
T.
,
Maiwald
,
T.
,
Polenz
,
S.
,
Albert
,
M.
,
Näsström
,
J.
,
Marquardt
,
A.
,
Riede
,
M.
,
Lopez
,
E.
,
Brueckner
,
F.
,
Beyer
,
E.
, and
Leyens
,
C.
,
2018
, “
Added Value by Hybrid Additive Manufacturing and Advanced Manufacturing Approaches
,”
J. Laser. Appl.
,
30
(
3
), p.
032301
. 10.2351/1.5040632
19.
Hendrixson
,
S.
,
2015
, “
Simulation Software Adds Functionality for Hybrid Machining Centers
,”
Mod. Mach. Shop
,
88
(
3
), p.
160
.
20.
Maes
,
F.
,
Collignon
,
A.
,
Vandermeulen
,
D.
,
Marchal
,
G.
, and
Suetens
,
P.
,
1997
, “
Multimodality Image Registration by Maximization of Mutual Information
,”
IEEE Trans. Med. Imaging
,
16
(
2
), pp.
187
198
. 10.1109/42.563664
21.
Viola
,
P.
, and
Wells
III,
W. M.
,
1997
, “
Alignment by Maximization of Mutual Information
,”
Int. J. Comput. Vision
,
24
(
2
), pp.
137
154
. 10.1023/A:1007958904918
22.
Zitová
,
B.
, and
Flusser
,
J.
,
2003
, “
Image Registration Methods: A Survey
,”
Image Vision Comput.
,
21
(
11
), pp.
977
1000
. 10.1016/S0262-8856(03)00137-9
23.
Amankwah
,
A.
, and
Aldrich
,
C.
,
2012
, “
Multiresolution Image Registration Using Spatial Mutual Information
,”
2012 Oceans
,
Hampton Roads, VA
,
Oct. 14
,
IEEE
,
New York
, pp.
1
4
.
24.
Liu
,
C.
,
Li
,
K.
, and
Liu
,
Z.
,
2005
, “
Medical Image Registration by Maximization of Combined Mutual Information and Edge Correlative Deviation
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
.
IEEE Engineering in Medicine and Biology Society
,
6
,
Shanghai, China
, pp.
6379
6382
.10.1109/IEMBS.2005.1615957
25.
Concheiro
,
R.
,
Amor
,
M.
,
Padrón
,
E. J.
, and
Doggett
,
M.
,
2014
, “
Interactive Rendering of Nurbs Surfaces
,”
Comput.-Aided Des.
,
56
, pp.
34
44
. 10.1016/j.cad.2014.06.005
26.
Jang
,
D.
,
Kim
,
K.
, and
Jung
,
J.
,
2000
, “
Voxel-Based Virtual Multi-Axis Machining
,”
Int. J. Adv. Manuf. Technol.
,
16
(
10
), pp.
709
713
. 10.1007/s001700070022
27.
Kalojanov
,
J.
,
Billeter
,
M.
, and
Slusallek
,
P.
,
2011
, “
Two-Level Grids for Ray Tracing on Gpus
,”
Comput. Graph. Forum
,
30
(
2
), pp.
307
314
. 10.1111/j.1467-8659.2011.01862.x
28.
Kalojanov
,
J.
, and
Slusallek
,
P.
,
2009
, “
A Parallel Algorithm for Construction of Uniform Grids
,” pp.
23
28
.
29.
Wang
,
M.
, and
Tseng
,
Y.
,
2011
, “
Incremental Segmentation of Lidar Point Clouds With An Octree-Structured Voxel Space
,”
The Photogrammetric Record
,
26
(
133
), pp.
32
57
. 10.1111/j.1477-9730.2011.00624.x
30.
Laine
,
S.
, and
Karras
,
T.
,
2011
, “
Efficient Sparse Voxel Octrees
,”
IEEE Trans. Visual Comput. Graphics
,
17
(
8
), pp.
1048
1059
. 10.1109/TVCG.2010.240
31.
Hossain
,
M. M.
,
Tucker
,
T. M.
,
Kurfess
,
T. R.
, and
Vuduc
,
R. W.
,
2016
, “
Hybrid Dynamic Trees for Extreme-Resolution 3D Sparse Data Modeling
,”
IEEE International Parallel and Distributed Processing Symposium (IPDPS)
, pp.
132
141
.
32.
Hossain
,
M. M.
,
Vuduc
,
R. W.
,
Nath
,
C.
,
Kurfess
,
T. R.
, and
Tucker
,
T. M.
,
2016
, “
A Graphical Approach for Freeform Surface Offsetting With GPU Acceleration for Subtractive 3D Printing
,”
Volume 2: Materials; Biomanufacturing; Properties; Applications and Systems; Sustainable Manufacturing, no. 49903 in ASME 2016 International Manufacturing Science and Engineering Conference
,
Blacksburg, VA
,
Sept. 26
, p. V002T04A031.
33.
Museth
,
K.
,
2013
, “
VDB: High-Resolution Sparse Volumes With Dynamic Topology
,”
ACM Transactions on Graphics
,
32
(
3
), pp.
2:71
27:22
. 10.1145/2487228.2487235
34.
Konobrytskyi
,
D.
,
Hossain
,
M. M.
,
Tucker
,
T. M.
,
Tarbutton
,
J. A.
, and
Kurfess
,
T. R.
,
2018
, “
5-Axis Tool Path Planning Based on Highly Parallel Discrete Volumetric Geometry Representation: Part I Contact Point Generation
,”
Comput.-Aided Des. Appl.
,
15
(
1
), pp.
76
89
. 10.1080/16864360.2017.1353730
35.
Grimson
,
E.
, and
Kikinis
,
R.
,
2000
,
Registration for Image-Guided Surgery
,
Elsevier Science & Technology
,
Amsterdam, The Netherlands
, pp.
695
705
.
36.
Sun
,
X.
,
McKenzie
,
F. D.
,
Bawab
,
S.
,
Li
,
J.
,
Yoon
,
Y.
, and
Huang
,
J.-K.
,
2011
, “
Automated Dental Implantation Using Image-Guided Robotics: Registration Results
,”
Int. J. Comput. Assisted Radiol. Surgery
,
6
(
5
), pp.
627
634
. 10.1007/s11548-010-0543-3
37.
Wang
,
Z.
,
Kieu
,
H.
,
Nguyen
,
H.
, and
Le
,
M.
,
2015
, “
Digital Image Correlation in Experimental Mechanics and Image Registration in Computer Vision: Similarities, Differences and Complements
,”
Opt. Lasers Eng.
,
65
, pp.
18
27
. 10.1016/j.optlaseng.2014.04.002
38.
Bærentzen
,
J. A.
,
2012
,
Guide to Computational Geometry Processing Foundations, Algorithms, and Methods
,
Springer
,
New York, NY
.
39.
Besl
,
P.J.
, and
McKay
,
N. D.
,
1992
, “
A Method for Registration of 3-D Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
14
(
2
), pp.
239
256
. 10.1109/34.121791
40.
Rusinkiewicz
,
S.
, and
Levoy
,
M.
,
2001
, “
Efficient Variants of the ICP Algorithm
,”
2001
.
Proceedings. Third International Conference on 3-D Digital Imaging and Modeling
,
IEEE
,
New York
, pp.
145
152
.
41.
Fitzgibbon
,
A. W.
,
2003
, “
Robust Registration of 2D and 3D Point Sets
,”
Image Vision Comput.
,
21
(
13–14
), pp.
1145
1153
. 10.1016/j.imavis.2003.09.004
42.
Hill
,
D. L. G.
, and
Hawkes
,
D. J.
,
2008
, “
Across-Modality Registration Using Intensity-Based Cost Functions
,”
Handbook of Medical Image Processing and Analysis
, pp.
613
628
.
43.
Maurer
,
C. R.
,
Qi
,
R.
, and
Raghavan
,
V.
,
2003
, “
A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
25
(
2
), pp.
265
270
. 10.1109/TPAMI.2003.1177156
You do not currently have access to this content.