Abstract

An additive manufacturing-enabled bi-continuous piezocomposite architecture is presented to achieve mechanical flexibility and piezoelectricity simultaneously in piezoelectric materials. This architecture comprises an active ferroelectric ceramic phase and a passive flexible polymer phase, which are separated by a tailorable phase interface. Triply periodic minimal surfaces were used to define the phase interface, due to their excellent elastic properties and load transfer efficiency. A suspension-enclosing projection-stereolithography process was used to additively manufacture this material. Postprocesses including polymer infiltration, electroding, and poling are introduced. Piezoelectric properties of the piezocomposites are numerically and experimentally studied. The results highlight the role of tailorable triply periodic phase interfaces in promoting mechanical flexibility and piezoelectricity of bi-continuous piezocomposites.

References

References
1.
Kumar
,
S.
, and
Singh
,
R. N.
,
1996
, “
Crack Propagation in Piezoelectric Materials Under Combined Mechanical and Electrical Loadings
,”
Acta Mater.
,
44
(
1
), pp.
173
200
. 10.1016/1359-6454(95)00175-3
2.
Gullapalli
,
H.
,
Vemuru
,
V. S.
,
Kumar
,
A.
,
Botello-Mendez
,
A.
,
Vajtai
,
R.
,
Terrones
,
M.
,
Nagarajaiah
,
S.
, and
Ajayan
,
P. M.
,
2010
, “
Flexible Piezoelectric ZnO–Paper Nanocomposite Strain Sensor
,”
Small
,
6
(
15
), pp.
1641
1646
. 10.1002/smll.201000254
3.
Skinner
,
D.
,
Newnham
,
R.
, and
Cross
,
L.
,
1978
, “
Flexible Composite Transducers
,”
Mater. Res. Bull.
,
13
(
6
), pp.
599
607
. 10.1016/0025-5408(78)90185-X
4.
Kim
,
H. S.
,
Kim
,
J.-H.
, and
Kim
,
J.
,
2011
, “
A Review of Piezoelectric Energy Harvesting Based on Vibration
,”
Int. J. Precis. Eng. Manuf.
,
12
(
6
), pp.
1129
1141
. 10.1007/s12541-011-0151-3
5.
Bowen
,
C.
,
Kim
,
H.
,
Weaver
,
P.
, and
Dunn
,
S.
,
2014
, “
Piezoelectric and Ferroelectric Materials and Structures for Energy Harvesting Applications
,”
Energy Environ. Sci.
,
7
(
1
), pp.
25
44
. 10.1039/C3EE42454E
6.
O'Donnell
,
J.
,
Kim
,
M.
, and
Yoon
,
H.-S.
,
2017
, “
A Review on Electromechanical Devices Fabricated by Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
010801
. 10.1115/1.4033758
7.
Kao
,
Y.-T.
,
Zhang
,
Y.
,
Wang
,
J.
, and
Tai
,
B. L.
,
2017
, “
Loading–Unloading Cycles of Three-Dimensional-Printed Built Bimaterial Structures With Ceramic and Elastomer
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041006
. 10.1115/1.4034668
8.
Newnham
,
R.
,
Skinner
,
D.
, and
Cross
,
L.
,
1978
, “
Connectivity and Piezoelectric-Pyroelectric Composites
,”
Mater. Res. Bull.
,
13
(
5
), pp.
525
536
. 10.1016/0025-5408(78)90161-7
9.
Tressler
,
J.
,
Alkoy
,
S.
,
Dogan
,
A.
, and
Newnham
,
R.
,
1999
, “
Functional Composites for Sensors, Actuators and Transducers
,”
Compos. Part A
,
30
(
4
), pp.
477
482
. 10.1016/S1359-835X(98)00137-7
10.
Bowen
,
C.
, and
Topolov
,
V. Y.
,
2003
, “
Piezoelectric Sensitivity of PbTiO 3-Based Ceramic/Polymer Composites With 0–3 and 3–3 Connectivity
,”
Acta Mater.
,
51
(
17
), pp.
4965
4976
. 10.1016/S1359-6454(03)00283-0
11.
Han
,
K.
,
Safari
,
A.
, and
Riman
,
R. E.
,
1991
, “
Colloidal Processing for Improved Piezoelectric Properties of Flexible 0–3 Ceramic–Polymer Composites
,”
J. Am. Ceram. Soc.
,
74
(
7
), pp.
1699
1702
. 10.1111/j.1151-2916.1991.tb07165.x
12.
Van Loock
,
F.
,
Deutz
,
D.
,
van der Zwaag
,
S.
, and
Groen
,
W.
,
2016
, “
Exploring the Piezoelectric Performance of PZT Particulate-Epoxy Composites Loaded in Shear
,”
Smart Mater. Struct.
,
25
(
8
), p.
085039
. 10.1088/0964-1726/25/8/085039
13.
Taunaumang
,
H.
,
Guy
,
I.
, and
Chan
,
H. L.
,
1994
, “
Electromechanical Properties of 1-3 Piezoelectric Ceramic/Piezoelectric Polymer Composites
,”
J. Appl. Phys.
,
76
(
1
), pp.
484
489
. 10.1063/1.357099
14.
Lous
,
G. M.
,
Cornejo
,
I. A.
,
McNulty
,
T. F.
,
Safari
,
A.
, and
Danforth
,
S. C.
,
2000
, “
Fabrication of Piezoelectric Ceramic/Polymer Composite Transducers Using Fused Deposition of Ceramics
,”
J. Am. Ceram. Soc.
,
83
(
1
), pp.
124
128
. 10.1111/j.1151-2916.2000.tb01159.x
15.
Banno
,
H.
,
1993
, “
Effects of Porosity on Dielectric, Elastic and Electromechanical Properties of Pb (Zr, Ti) O3 Ceramics With Open Pores: A Theoretical Approach
,”
Jpn. J. Appl. Phys.
,
32
(
9S
), p.
4214
. 10.1143/JJAP.32.4214
16.
Bowen
,
C.
,
Perry
,
A.
,
Kara
,
H.
, and
Mahon
,
S.
,
2001
, “
Analytical Modelling of 3-3 Piezoelectric Composites
,”
J. Eur. Ceram. Soc.
,
21
(
10
), pp.
1463
1467
. 10.1016/S0955-2219(01)00042-5
17.
Kara
,
H.
,
Ramesh
,
R.
,
Stevens
,
R.
, and
Bowen
,
C. R.
,
2003
, “
Porous PZT Ceramics for Receiving Transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
50
(
3
), pp.
289
296
. 10.1109/TUFFC.2003.1193622
18.
Ji
,
Y. Z.
,
Wang
,
Z.
,
Wang
,
B.
,
Chen
,
Y.
,
Zhang
,
T.
,
Chen
,
L. Q.
,
Song
,
X.
, and
Chen
,
L.
,
2017
, “
Effect of Meso-Scale Geometry on Piezoelectric Performances of Additively Manufactured Flexible Polymer-Pb (ZrxTi1− x) O3 Composites
,”
Adv. Eng. Mater.
,
19
(
6
), p.
1600803
. 10.1002/adem.201600803
19.
Nguyen
,
B.
,
Challagulla
,
K.
,
Venkatesh
,
T.
,
Hadjiloizi
,
D.
, and
Georgiades
,
A.
,
2016
, “
Effects of Porosity Distribution and Porosity Volume Fraction on the Electromechanical Properties of 3-3 Piezoelectric Foams
,”
Smart Mater. Struct.
,
25
(
12
), p.
125028
. 10.1088/0964-1726/25/12/125028
20.
Roscow
,
J.
,
Lewis
,
R.
,
Taylor
,
J.
, and
Bowen
,
C.
,
2017
, “
Modelling and Fabrication of Porous Sandwich Layer Barium Titanate With Improved Piezoelectric Energy Harvesting Figures of Merit
,”
Acta Mater.
,
128
, pp.
207
217
. 10.1016/j.actamat.2017.02.029
21.
Roscow
,
J.
,
Zhang
,
Y.
,
Taylor
,
J.
, and
Bowen
,
C.
,
2015
, “
Porous Ferroelectrics for Energy Harvesting Applications
,”
Eur. Phys. J. Spec. Topics
,
224
(
14–15
), pp.
2949
. 10.1140/epjst/e2015-02600-y
22.
Maldovan
,
M.
,
Ullal
,
C. K.
,
Jang
,
J. H.
, and
Thomas
,
E. L.
,
2007
, “
Sub-Micrometer Scale Periodic Porous Cellular Structures: Microframes Prepared by Holographic Interference Lithography
,”
Adv. Mater.
,
19
(
22
), pp.
3809
3813
. 10.1002/adma.200700811
23.
Wang
,
L.
,
Lau
,
J.
,
Thomas
,
E. L.
, and
Boyce
,
M. C.
,
2011
, “
Co-Continuous Composite Materials for Stiffness, Strength, and Energy Dissipation
,”
Adv. Mater.
,
23
(
13
), pp.
1524
1529
. 10.1002/adma.201003956
24.
Chen
,
Y.
, and
Wang
,
L.
,
2014
, “
Periodic Co-Continuous Acoustic Metamaterials With Overlapping Locally Resonant and Bragg Band Gaps
,”
Appl. Phys. Lett.
,
105
(
19
), p.
191907
. 10.1063/1.4902129
25.
Góźdź
,
W. T.
, and
Hołyst
,
R.
,
1996
, “
Triply Periodic Surfaces and Multiply Continuous Structures From the Landau Model of Microemulsions
,”
Phys. Rev. E
,
54
(
5
), p.
5012
. 10.1103/PhysRevE.54.5012
26.
Lambert
,
C. A.
,
Radzilowski
,
L. H.
, and
Thomas
,
E. L.
,
1996
, “
Triply Periodic Level Surfaces as Models for Cubic Tricontinuous Block Copolymer Morphologies
,” Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
354
(
1715
), pp.
2009
2023
. 10.1098/rsta.1996.0089
27.
Halloran
,
J. W.
,
2016
, “
Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization
,”
Annu. Rev. Mater. Res.
,
46
, pp.
19
40
. 10.1146/annurev-matsci-070115-031841
28.
Song
,
X.
,
Zhang
,
Z.
,
Chen
,
Z.
, and
Chen
,
Y.
,
2017
, “
Porous Structure Fabrication Using a Stereolithography-Based Sugar Foaming Method
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031015
. 10.1115/1.4034666
29.
Song
,
X.
,
Chen
,
Z.
,
Lei
,
L.
,
Shung
,
K.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2017
, “
Piezoelectric Component Fabrication Using Projection-Based Stereolithography of Barium Titanate Ceramic Suspensions
,”
Rapid Prototyp. J.
,
23
(
1
), pp.
44
53
. 10.1108/RPJ-11-2015-0162
30.
Chen
,
Z.
,
Song
,
X.
,
Lei
,
L.
,
Chen
,
X.
,
Fei
,
C.
,
Chiu
,
C. T.
,
Qian
,
X.
,
Ma
,
T.
,
Yang
,
Y.
, and
Shung
,
K.
,
2016
, “
3D Printing of Piezoelectric Element for Energy Focusing and Ultrasonic Sensing
,”
Nano Energy
,
27
, pp.
78
86
. 10.1016/j.nanoen.2016.06.048
31.
Ye
,
H.
,
Venketeswaran
,
A.
,
Das
,
S.
, and
Zhou
,
C.
,
2017
, “
Investigation of Separation Force for Constrained-Surface Stereolithography Process From Mechanics Perspective
,”
Rapid Prototyp. J.
,
23
(
4
), pp.
696
710
. 10.1108/RPJ-06-2016-0091
32.
Pan
,
Y.
,
He
,
H.
,
Xu
,
J.
, and
Feinerman
,
A.
,
2017
, “
Study of Separation Force in Constrained Surface Projection Stereolithography
,”
Rapid Prototyp. J.
,
23
(
2
), pp.
353
361
. 10.1108/RPJ-12-2015-0188
33.
He
,
H.
,
Xu
,
J.
,
Yu
,
X.
, and
Pan
,
Y.
,
2018
, “
Effect of Constrained Surface Texturing on Separation Force in Projection Stereolithography
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091007
. 10.1115/1.4040322
34.
He
,
L.
, and
Song
,
X.
,
2018
, “
Supportability of a High-Yield-Stress Slurry in a New Stereolithography-Based Ceramic Fabrication Process
,”
JOM
,
70
(
3
), pp.
407
412
. 10.1007/s11837-017-2657-3
35.
He
,
L.
,
Fei
,
F.
,
Wang
,
W.
, and
Song
,
X.
,
2019
, “
Support-Free Ceramic Stereolithography of Complex Overhanging Structures Based on an Elasto-Viscoplastic Suspension Feedstock
,”
ACS Appl. Mater. Interf.
,
11
(
20
), pp.
18849
18857
. 10.1021/acsami.9b04205
36.
Corning
,
D.
, “
Sylgard 184 Silicone Elastomer
,” http://www.dowcorning.com/DataFiles/090276fe80190b08.pdf.
37.
Johnston
,
I.
,
McCluskey
,
D.
,
Tan
,
C.
, and
Tracey
,
M.
,
2014
, “
Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering
,”
J. Micromech. Microeng.
,
24
(
3
), p.
035017
. 10.1088/0960-1317/24/3/035017
38.
Waller
,
D.
,
Iqbal
,
T.
, and
Safari
,
A.
,
1989
, “
Poling of Lead Zirconate Titanate Ceramics and Flexible Piezoelectric Composites by the Corona Discharge Technique
,”
J. Am. Ceram. Soc.
,
72
(
2
), pp.
322
324
. 10.1111/j.1151-2916.1989.tb06125.x
39.
Dunn
,
M. L.
,
1995
, “
Effects of Grain Shape Anisotropy, Porosity, and Microcracks on the Elastic and Dielectric Constants of Polycrystalline Piezoelectric Ceramics
,”
J. Appl. Phys.
,
78
(
3
), pp.
1533
1541
. 10.1063/1.360246
40.
Liu
,
J.
,
Shen
,
Z.
,
Yao
,
W.
,
Zhao
,
Y.
, and
Mukherjee
,
A. K.
,
2010
, “
Visible and Infrared Transparency in Lead-Free Bulk BaTiO3 and SrTiO3 Nanoceramics
,”
Nanotechnol.
,
21
(
7
), p.
075706
. 10.1088/0957-4484/21/7/075706
41.
Devan
,
R. S.
,
Ma
,
Y.-R.
, and
Chougule
,
B.
,
2009
, “
Effective Dielectric and Magnetic Properties of (Ni–Co–Cu) Ferrite/BTO Composites
,”
Mater. Chem. Phys.
,
115
(
1
), pp.
263
268
. 10.1016/j.matchemphys.2008.11.059
42.
Polotai
,
A.
,
Breece
,
K.
,
Dickey
,
E.
,
Randall
,
C.
, and
Ragulya
,
A.
,
2005
, “
A Novel Approach to Sintering Nanocrystalline Barium Titanate Ceramics
,”
J. Am. Ceram. Soc.
,
88
(
11
), pp.
3008
3012
. 10.1111/j.1551-2916.2005.00552.x
43.
Burke
,
J.
,
1957
, “
Role of Grain Boundaries in Sintering
,”
J. Am. Ceram. Soc.
,
40
(
3
), pp.
80
85
. 10.1111/j.1151-2916.1957.tb12580.x
44.
Ming
,
C.
,
Yang
,
T.
,
Luan
,
K.
,
Chen
,
L.
,
Wang
,
L.
,
Zeng
,
J.
,
Li
,
Y.
,
Zhang
,
W.
, and
Chen
,
L.-Q.
,
2018
, “
Microstructural Effects on Effective Piezoelectric Responses of Textured PMN-PT Ceramics
,”
Acta Mater.
,
145
, pp.
62
70
. 10.1016/j.actamat.2017.11.043
45.
Chaim
,
R.
,
Levin
,
M.
,
Shlayer
,
A.
, and
Estournès
,
C.
,
2008
, “
Sintering and Densification of Nanocrystalline Ceramic Oxide Powders: A Review
,”
Adv. Appl. Ceram.
,
107
(
3
), pp.
159
169
. 10.1179/174367508X297812
46.
Krill Iii
,
C. E.
, and
Chen
,
L.-Q.
,
2002
, “
Computer Simulation of 3-D Grain Growth Using a Phase-Field Model
,”
Acta Mater.
,
50
(
12
), pp.
3059
3075
. 10.1016/S1359-6454(02)00084-8
47.
Chen
,
L. Q.
,
2008
, “
Phase-Field Method of Phase Transitions/Domain Structures in Ferroelectric Thin Films: A Review
,”
J. Am. Ceram. Soc.
,
91
(
6
), pp.
1835
1844
. 10.1111/j.1551-2916.2008.02413.x
48.
Hu
,
S.
, and
Chen
,
L.
,
2001
, “
A Phase-Field Model for Evolving Microstructures With Strong Elastic Inhomogeneity
,”
Acta Mater.
,
49
(
11
), pp.
1879
1890
. 10.1016/S1359-6454(01)00118-5
49.
Yu
,
P.
,
Hu
,
S.
,
Chen
,
L.
, and
Du
,
Q.
,
2005
, “
An Iterative-Perturbation Scheme for Treating Inhomogeneous Elasticity in Phase-Field Models
,”
J. Comput. Phys.
,
208
(
1
), pp.
34
50
. 10.1016/j.jcp.2005.02.015
50.
Zhu
,
J.
,
Chen
,
L.-Q.
,
Shen
,
J.
, and
Tikare
,
V.
,
1999
, “
Coarsening Kinetics From a Variable-Mobility Cahn-Hilliard Equation: Application of a Semi-Implicit Fourier Spectral Method
,”
Phys. Rev. E
,
60
(
4
), p.
3564
. 10.1103/PhysRevE.60.3564
51.
Meng
,
X.
,
Wen
,
X.
, and
Qin
,
G.
,
2010
, “
DFT Study on Elastic and Piezoelectric Properties of Tetragonal BaTiO3
,”
Comput. Mater. Sci.
,
49
(
4
), pp.
S372
S377
. 10.1016/j.commatsci.2010.04.026
52.
Sharma
,
S. K.
,
Gaur
,
H.
,
Kulkarni
,
M.
,
Patil
,
G.
,
Bhattacharya
,
B.
, and
Sharma
,
A.
,
2013
, “
PZT–PDMS Composite for Active Damping of Vibrations
,”
Compos. Sci. Technol.
,
77
, pp.
42
51
. 10.1016/j.compscitech.2013.01.004
53.
James
,
N. K.
,
Deutz
,
D. B.
,
Bose
,
R. K.
,
van der Zwaag
,
S.
, and
Groen
,
P.
,
2016
, “
High Piezoelectric Voltage Coefficient in Structured Lead-Free (K, Na, Li) NbO3 Particulate—Epoxy Composites
,”
J. Am. Ceram. Soc.
,
99
(
12
), pp.
3957
3963
. 10.1111/jace.14428
54.
Rittenmyer
,
K.
,
Shrout
,
T.
,
Schulze
,
W.
, and
Newnham
,
R.
,
1982
, “
Piezoelectric 3–3 Composites
,”
Ferroelectrics
,
41
(
1
), pp.
189
195
. 10.1080/00150198208210623
55.
Lewis
,
T.
,
2004
, “
Interfaces are the Dominant Feature of Dielectrics at the Nanometric Level
,”
IEEE Trans. Dielectr. Electr. Insul.
,
11
(
5
), pp.
739
753
. 10.1109/TDEI.2004.1349779
You do not currently have access to this content.