Abstract

In the micro-milling process, the minimization of tool chatter is critical for good surface finish quality. The analysis of chatter requires an understanding of the milling tool as well as the dynamics of milling system structure. Frequency response function (FRF) at the micro-milling tool point reflects dynamic behavior of the whole micro-milling machine–spindle–tool system. However, the tool point FRF of micro-milling cannot be obtained directly through the hammering test. To solve the problem, the authors get the FRF of the spindle system based on the rotating Timoshenko beam theory and the receptance coupling substructure analysis (RCSA), and the bearing characteristics are added into the spindle model through structural modification. Then, the centrifugal force and gyroscopic effect caused by the high-speed rotation of the micro-milling spindle are considered to better simulate the real scenario and increase the accuracy of modal parameters. The method has general usage and can be applied to all the micro-milling tools under which only the spindle dimension, bearing characteristics, and contact parameters need to be changed.

References

1.
Lu
,
Y. A.
,
Ding
,
Y.
, and
Zhu
,
L. M.
,
2017
, “
Dynamics and Stability Prediction of Five-Axis Flat-End Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061015
. 10.1115/1.4035422
2.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2017
, “
Milling Stability Interrogation by Subharmonic Sampling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041009
. 10.1115/1.4034894
3.
Schmitz
,
T.
, and
Donaldson
,
R.
,
2000
, “
Predicting High-Speed Machining Dynamics by Substructure Analysis
,”
CIRP Ann.
,
49
(
1
), pp.
303
308
. 10.1016/S0007-8506(07)62951-5
4.
Schmitz
,
T.
,
Davies
,
M.
, and
Kennedy
,
M.
,
2001
, “
Tool Point Frequency Response Prediction for High-Speed Machining by RCSA
,”
ASME J. Manuf. Sci. Eng.
,
123
(4), pp.
700
707
. 10.1115/1.1392994
5.
Schmitz
,
T.
, and
Duncan
,
G. S.
,
2006
, “
Receptance Coupling for Dynamics Prediction of Assemblies With Coincident Neutral Axes
,”
J. Sound. Vib.
,
289
(
4–5
), pp.
1045
1065
. 10.1016/j.jsv.2005.03.006
6.
Schmitz
,
T.
,
Powell
,
K.
,
Won
,
D.
,
Duncan
,
G. S.
,
Sawyer
,
W. G.
, and
Ziegert
,
J.
,
2007
, “
Shrink Fit Tool Holder Connection Stiffness/Damping Modeling for Frequency Response Prediction in Milling
,”
Int. J. Mach. Tool. Manu.
,
47
(
9
), pp.
1368
1380
. 10.1016/j.ijmachtools.2006.08.009
7.
Filiz
,
S.
,
Cheng
,
C.-H.
,
Powell
,
K.
,
Schmitz
,
T.
, and
Ozdoganlar
,
O.
,
2009
, “
An Improved Tool-Holder Model for RCSA Tool-Point Frequency Response Prediction
,”
Precis. Eng.
,
33
(
1
), pp.
26
36
. 10.1016/j.precisioneng.2008.03.003
8.
Schmitz
,
T.
,
2010
, “
Torsional and Axial Frequency Response Prediction by RCSA
,”
Precis. Eng.
,
34
(
2
), pp.
345
356
. 10.1016/j.precisioneng.2009.08.005
9.
Bediz
,
B.
,
Kumar
,
U.
,
Schmitz
,
T.
, and
Ozdoganlar
,
O. B.
,
2011
, “
Modeling and Experimentation for Three-Dimensional Dynamics of Endmills
,”
Int. J. Mach. Tool. Manu.
,
53
(
1
), pp.
39
50
. 10.1016/j.ijmachtools.2011.09.005
10.
Kumar
,
U.
, and
Schmitz
,
T.
,
2012
, “
Spindle Dynamics Identification for Receptance Coupling Substructure Analysis
,”
Precis. Eng.
,
36
(
3
), pp.
435
443
. 10.1016/j.precisioneng.2012.01.007
11.
Mascardelli
,
B.
,
Park
,
S.
, and
Freiheit
,
T.
,
2008
, “
Substructure Coupling of Microend Mills to Aid in the Suppression of Chatter
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
0110101
. 10.1115/1.2816104
12.
Schmitz
,
T.
, and
Duncan
,
G. S.
,
2005
, “
Three-Component Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction
,”
ASME J. Manuf. Sci. Eng.
,
127
(4), pp.
781
790
. 10.1115/1.2039102
13.
Graham
,
E.
,
Mehrpouya
,
M.
,
Nagamune
,
R.
, and
Park
,
S.
,
2014
, “
Robust Prediction of Chatter Stability in Micro Milling Comparing Edge Theorem and LMI
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
29
39
. 10.1016/j.cirpj.2013.09.002
14.
Rahnama
,
R.
,
Sajjadi
,
M.
, and
Park
,
S.
,
2009
, “
Chatter Suppression in Micro end Milling With Process Damping
,”
J. Mater. Process. Technol.
,
209
(
17
), pp.
5766
5776
. 10.1016/j.jmatprotec.2009.06.009
15.
Zhang
,
X.
,
Yu
,
T.
, and
Wang
,
W.
,
2016
, “
Chatter Stability of Micro end Milling by Considering Process Nonlinearities and Process Damping
,”
Int. J. Adv. Manuf. Technol.
,
87
(
9–12
), pp.
2785
2796
. 10.1007/s00170-016-8658-5
16.
Filiz
,
S.
, and
Ozdoganlar
,
O.
,
2008
, “
Microendmill Dynamics Including the Actual Fluted Geometry and Setup Errors—Part I: Model Development and Numerical Solution
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
0311191
. 10.1115/1.2917321
17.
Tajalli
,
S.
,
Movahhedy
,
M.
, and
Akbari
,
J.
,
2012
, “
Investigation of the Effects of Process Damping on Chatter Instability in Micro End Milling
,”
Procedia CIRP
,
1
(
1
), pp.
156
161
. 10.1016/j.procir.2012.04.027
18.
Tajalli
,
S.
,
Movahhedy
,
M.
, and
Akbari
,
J.
,
2013
, “
Size Dependent Vibrations of Micro-End Mill Incorporating Strain Gradient Elasticity Theory
,”
J. Sound Vibr.
,
332
(
15
), pp.
3922
3944
. 10.1016/j.jsv.2013.01.038
19.
Tajalli
,
S.
,
Movahhedy
,
M.
, and
Akbari
,
J.
,
2014
, “
Chatter Instability Analysis of Spinning Micro-End Mill With Process Damping Effect Via Semi-Discretization Approach
,”
Acta Mech.
,
225
(
3
), pp.
715
734
. 10.1007/s00707-013-0981-4
20.
Huang
,
Y.
,
Yin
,
Q.
, and
Zhao
,
Y.
,
2016
, “
Dynamic Analysis of Micro-Endmill by Chebyshev Spectral Method
,”
Zhendong yu Chongji/J. Vib. Shock
,
35
(
18
), pp.
28
33
.
21.
Lu
,
X. H.
,
Jia
,
Z. Y.
,
Zhang
,
H. X.
,
Liu
,
S. Q.
,
Feng
,
Y.
, and
Liang
,
S.
,
2017
, “
Tool Point Frequency Response Prediction for Micro-Milling by Receptance Coupling Substructure Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(7), p.
071004
. 10.1115/1.4035491
22.
Xu
,
X.
,
Tang
,
W.
, and
Sun
,
S.
,
2010
, “
Research of Gyroscopic Effects on the Stability of High Speed Milling
,”
Key Eng. Mater.
,
431–432
, pp.
369
372
. www.scientific.net/KEM.431-432.369
23.
Sun
,
S.
,
Tang
,
W.
,
Huang
,
H.
, and
Xu
,
X.
,
2009
, “
Dynamics and Stability of Milling Process Considering the Gyroscopic Effects
,”
Adv. Mater. Res.
,
76–78
, pp.
624
629
. www.scientific.net/AMR.76-78.624
24.
Meng
,
D.
,
Long
,
X.
, and
Meng
,
G.
,
2012
, “
Analysis of Dynamic Characteristics of Rotor-Bearing System of High Speed Spindle
,”
Noise Vib. Control
,
32
(
2
), pp.
7
12
.
25.
Li
,
S.
,
Zhang
,
G.
,
Chen
,
X.
,
Yang
,
L.
,
Chen
,
C.
, and
Zhao
,
Z.
,
2006
, “
Analysis of the Dynamic Characteristics of the Ball Bearing-Rotor System in High-Speed Electric Spindles
,”
Mec. Sci. Technol. Aerosp. Eng.
,
25
(
12
), pp.
1447
1450
.
26.
Cheng
,
C.
,
Schmitz
,
T.
, and
Duncan
,
G.
,
2007
, “
Rotating Tool Point Frequency Response Prediction Using RCSA
,”
Mach. Sci. Technol.
,
11
(
3
), pp.
443
446
.
27.
Özsahin
,
O.
,
Özgüven
,
H.
, and
Budark
,
E.
,
2014
, “
Analytical Modeling of Asymmetric Multi-Segment Rotor—Bearing Systems With Timoshenko Beam Model Including Gyroscopic Moments
,”
Comput. Struct.
,
114
, pp.
119
126
. 10.1016/j.compstruc.2014.08.001
28.
Ertürk
,
A.
,
Özgüven
,
H.
, and
Budak
,
E.
,
2006
, “
Analytical Modeling of Spindle–Tool Dynamics on Machine Tools Using Timoshenko Beam Model and Receptance Coupling for the Prediction of Tool Point FRF
,”
Int. J. Mach. Tools Manuf.
,
46
(
15
), pp.
1901
1912
. 10.1016/j.ijmachtools.2006.01.032
29.
Özsahin
,
O.
,
Erturk
,
A.
,
Ozguven
,
H.
, and
Budak
,
E.
,
2009
, “
Effect Analysis of Bearing and Interface Dynamics on Tool Point FRF for Chatter Stability in Machine Tools by Using a New Analytical Model for Spindle–Tool Assemblies
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
23
32
. 10.1016/j.ijmachtools.2006.03.001
30.
Tang
,
Y.
,
Luo
,
G.
,
Zhang
,
J.
, and
Gao
,
D.
,
2005
, “
Theoretical Analysis and Experiment of the High Speed Ceramic Rolling Bearing Equivalent Stiffness
,”
Hangkong Dongli Xuebao/J. Aerosp. Power
,
20
(
2
), pp.
240
244
.
31.
Dai
,
S.
,
1993
,
Application Manual of Rolling Bearing for Machine Tool
,
China Machine Press
,
Beijing
.
32.
Wang
,
B.
,
Sun
,
W.
, and
Wen
,
B.
,
2015
, “
The Effect of High Speeds on Dynamic Characteristics of Motorized Spindle System
,”
Gongcheng Lixue/Eng. Mech.
,
32
(
6
), pp.
231
237
.
33.
Xiong
,
G.
,
Yi
,
J.
,
Zeng
,
C.
,
Guo
,
H.
, and
Li
,
L.
,
2003
, “
Study of the Gyroscopic Effect of the Spindle on the Stability Characteristics of the Milling System
,”
J. Mater. Process. Technol.
,
138
(
1-3
), pp.
379
384
. 10.1016/S0924-0136(03)00102-X
34.
Cao
,
H.
,
Li
,
B.
, and
He
,
Z.
,
2012
, “
Chatter Stability of Milling With Speed-Varying Dynamics of Spindles
,”
Int. J. Mach. Tools Manuf.
,
52
(
1
), pp.
50
58
. 10.1016/j.ijmachtools.2011.09.004
35.
Özşahin
,
O.
,
Budak
,
E.
, and
Özgüven
,
H.
,
2015
, “
Identification of Bearing Dynamics Under Operational Conditions for Chatter Stability Prediction in High Speed Machining Operations
,”
Precis. Eng.
,
42
, pp.
53
65
. 10.1016/j.precisioneng.2015.03.010
36.
Wang
,
F. C.
,
2015
, “
Stability Analysis for Micro-Milling Nickel-Base Superalloy Process
,” M.S. dissertation,
Dalian University of Technology
,
Dalian
.
You do not currently have access to this content.