Abstract

The study is to investigate the electropolishing characteristics of 316L stainless steel in a sulfuric acid-free electrolyte of phosphoric acid and glycerol and to explore the possibility of using this eco-friendly electrolyte instead of the widely used sulfuric acid-based electrolyte. The influences of process parameters on polishing effects and the corrosion resistance of electropolished samples are investigated. The experimental results show that the electropolishing temperature and acid concentration are directly related to the mass transport mechanism in the limiting current plateau region. The grain boundaries of workpiece were electrochemically dissolved faster than the grain themselves at the beginning of the electropolishing process because they are more reactive than grains. Moreover, the conventional sulfuric—phosphoric acid electrolyte was also used to electropolish the 316L stainless steel, and the electropolished surfaces were compared with the sulfuric acid-free electrolyte proposed in this study. When the sulfuric acid-free electrolyte was used to electropolish the 316L stainless steel, the X-ray photoelectron spectroscopy (XPS) analysis shows that atomic Cr/Fe ratio of 316L stainless steel was increased from 0.802 to 1.909 after electropolishing process in the sulfuric acid-free electrolyte of phosphoric acid and glycerol. The corrosion resistance of the electropolished 316L stainless steel is studied using electrochemical analysis, and the results are verified experimentally.

References

1.
Rotty
,
C.
,
Doche
,
M.-L.
,
Mandroyan
,
A.
, and
Hihn
,
J.-Y.
,
2017
, “
Electropolishing Behavior of Additive Layer Manufacturing 316L Stainless Steel in Deep Eutectic Solvents
,”
ECS Trans.
,
77
(
11
), pp.
1199
1207
. 10.1149/07711.1199ecst
2.
Kumar
,
A.
,
Ganesh
,
P.
,
Kaul
,
R.
,
Chinna Rao
,
P.
,
Yadav
,
D. P.
,
Sindal
,
B. K.
,
Gupta
,
R. K.
,
Sridhar
,
R.
,
Joshi
,
S. C.
, and
Singh
,
B.
,
2016
, “
Process Development for Vacuum Brazed Niobium–316L Stainless Steel Transition Joints for Superconducting Cavities
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
015001
. 10.1115/1.4034716
3.
Majumdar
,
J. D.
,
Kumar
,
A.
,
Pityana
,
S.
, and
Manna
,
I.
,
2018
, “
Laser Surface Melting of AISI 316L Stainless Steel for Bio-Implant Application
,”
Proc. Natl. Acad. Sci. India Sect. A Phys. Sci.
,
88
(3), pp.
1
17
. 10.1007/s40010-018-0524-4
4.
Hryniewicz
,
T.
,
Rokosz
,
K.
, and
Rokicki
,
R.
,
2008
, “
Electrochemical and XPS Studies of AISI 316L Stainless Steel After Electropolishing in a Magnetic Field
,”
Corros. Sci.
,
50
(
9
), pp.
2676
2681
. 10.1016/j.corsci.2008.06.048
5.
Zhou
,
W.
,
Zhong
,
X.
,
Wu
,
X.
,
Yuan
,
L.
,
Zhao
,
Z.
,
Wang
,
H.
,
Xia
,
Y.
,
Feng
,
Y.
,
He
,
J.
, and
Chen
,
W.
,
2006
, “
The Effect of Surface Roughness and Wettability of Nanostructured TiO2 Film on TCA-8113 Epithelial-Like Cells
,”
Surf. Coatings Technol.
,
200
(
20–21
), pp.
6155
6160
. 10.1016/j.surfcoat.2005.09.029
6.
Hryniewicz
,
T.
,
Rokicki
,
R.
, and
Rokosz
,
K.
,
2008
, “
Surface Characterization of AISI 316L Biomaterials Obtained by Electropolishing in a Magnetic Field
,”
Surf. Coatings Technol.
,
202
(
9
), pp.
1668
1673
. 10.1016/j.surfcoat.2007.07.067
7.
Palmaz
,
J. C.
,
1997
, “
New Advances in Endovascular Technology
,”
Texas Hear. Inst. J.
,
24
(
3
), p.
156
.
8.
Fang
,
F. Z.
,
Zhang
,
N.
,
Guo
,
D.
,
Ehmann
,
K.
,
Cheung
,
B.
,
Liu
,
K.
, and
Yamamura
,
K.
,
2019
, “
Towards Atomic and Close-to-Atomic Scale Manufacturing
,”
Int. J. Extrem. Manuf.
,
1
(
1
), p.
012001
. 10.1088/2631-7990/ab0dfc
9.
Wang
,
K.
,
1997
,
Biocompatibilisation of Coronary Artery Stents
,
Leuven University Press
,
Leuven
.
10.
Steinemann
,
S. G.
,
1996
, “
Metal Implants and Surface Reactions
,”
Injury
,
27
(
Supp. 3
), pp.
S/C16
S/C22
. 10.1016/0020-1383(96)89027-9
11.
Bertrand
,
O. F.
,
Sipehia
,
R.
,
Mongrain
,
R.
,
Rodés
,
J.
,
Tardif
,
J. C.
,
Bilodeau
,
L.
,
Côté
,
G.
, and
Bourassa
,
M. G.
,
1998
, “
Biocompatibility Aspects of New Stent Technology
,”
J. Am. Coll. Cardiol.
,
32
(
2
), pp.
562
571
. 10.1016/S0735-1097(98)00289-7
12.
Fang
,
F. Z.
, and
Xu
,
F.
,
2018
, “
Recent Advances in Micro/Nano-Cutting: Effect of Tool Edge and Material Properties
,”
Nanomanufacturing Metrol.
,
1
(
1
), pp.
4
31
. 10.1007/s41871-018-0005-z
13.
Landolt
,
D.
,
1987
, “
Fundamental Aspects of Electropolishing
,”
Electrochim. Acta
,
32
(
1
), pp.
1
11
. 10.1016/0013-4686(87)87001-9
14.
Lee
,
E.-S.
,
2000
, “
Machining Characteristics of the Electropolishing of Stainless Steel (STS316L)
,”
Int. J. Adv. Manuf. Technol.
,
16
(
8
), pp.
591
599
. 10.1007/s001700070049
15.
Jiang
,
W.
,
Borduin
,
R.
,
Xin
,
H.
, and
Li
,
W.
,
2017
, “
Modeling of an Electropolishing-Assisted Electroless Deposition Process for Microcellular Metal Foam Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031018
. 10.1115/1.4035215
16.
Han
,
W.
, and
Fang
,
F. Z.
,
2019
, “
Fundamental Aspects and Recent Developments in Electropolishing
,”
Int. J. Mach. Tools Manuf.
,
139
(Apr.), pp.
1
23
. 10.1016/j.ijmachtools.2019.01.001
17.
Sutow
,
E. J.
,
1980
, “
The Influence of Electropolishing on the Corrosion Resistance of 316L Stainless Steel
,”
J. Biomed. Mater. Res.
,
14
(
5
), pp.
587
595
. 10.1002/jbm.820140505
18.
Scheerder
,
I. D.
,
Sohier
,
J.
,
Wang
,
K. A. I.
,
Verbeken
,
E.
,
Zhou
,
X. R.
,
Froyen
,
L.
,
Van Humbeeck
,
J. A. N.
,
Piessens
,
J. A. N.
, and
Van De Werf
,
F.
,
2000
, “
Metallic Surface Treatment Using Electrochemical Polishing Decreases Thrombogenicity and Neointimal Hyperplasia of Coronary Stents
,”
J. Interv. Cardiol.
,
13
(
3
), pp.
179
185
. 10.1111/j.1540-8183.2000.tb00286.x
19.
De Scheerder
,
I.
,
Sohier
,
J.
,
Verbeken
,
E.
,
Froyen
,
L.
, and
Van Humbeeck
,
J.
,
2001
, “
Biocompatibility of Coronary Stent Materials: Effect of Electrochemical Polishing
,”
Materwiss. Werksttech.
,
32
(
2
), pp.
142
148
. 10.1002/1521-4052(200102)32:2<142::AID-MAWE142>3.0.CO;2-N
20.
Hocheng
,
H.
,
Kao
,
P. S.
, and
Chen
,
Y. F.
,
2001
, “
Electropolishing of 316L Stainless Steel for Anticorrosion Passivation
,”
J. Mater. Eng. Perform.
,
10
(4), pp.
414
418
. 10.1361/105994901770344827
21.
Habibzadeh
,
S.
,
Li
,
L.
,
Shum-Tim
,
D.
,
Davis
,
E. C.
, and
Omanovic
,
S.
,
2014
, “
Electrochemical Polishing as a 316L Stainless Steel Surface Treatment Method: Towards the Improvement of Biocompatibility
,”
Corros. Sci.
,
87
(Oct.), pp.
89
100
. 10.1016/j.corsci.2014.06.010
22.
Latifi
,
A.
,
Imani
,
M.
,
Khorasani
,
M. T.
, and
Joupari
,
M. D.
,
2013
, “
Electrochemical and Chemical Methods for Improving Surface Characteristics of 316L Stainless Steel for Biomedical Applications
,”
Surf. Coatings Technol.
,
221
(Apr.), pp.
1
12
. 10.1016/j.surfcoat.2013.01.020
23.
Rotty
,
C.
,
Mandroyan
,
A.
,
Doche
,
M. L.
, and
Hihn
,
J. Y.
,
2016
, “
Electropolishing of CuZn Brasses and 316L Stainless Steels: Influence of Alloy Composition or Preparation Process (ALM vs. Standard Method)
,”
Surf. Coatings Technol.
,
307
(Dec.), pp.
125
135
. 10.1016/j.surfcoat.2016.08.076
24.
Zhao
,
H.
,
Humbeeck
,
J. V.
,
Sohier
,
J.
, and
Scheerder
,
I. D.
,
2002
, “
Electrochemical Polishing of 316L Stainless Steel Slotted Tube Coronary Stents
,”
J. Mater. Sci. Mater. Med.
,
13
(
10
), pp.
911
916
. 10.1023/A:101983180
25.
Piotrowski
,
O.
,
Madore
,
C.
, and
Landolt
,
D.
,
1998
, “
The Mechanism of Electropolishing of Titanium in Methanol-Sulfuric Acid Electrolytes
,”
J. Electrochem. Soc.
,
145
(
7
), pp.
2362
2369
. 10.1149/1.1838644
26.
Neelakantan
,
L.
,
Pareek
,
A.
, and
Hassel
,
A. W.
,
2011
, “
Electro-Dissolution of 30Nb-Ti Alloys in Methanolic Sulfuric Acid—Optimal Conditions for Electropolishing
,”
Electrochim. Acta
,
56
(
19
), pp.
6676
6682
. 10.1016/j.electacta.2011.05.049
27.
Tian
,
H.
,
Corcoran
,
S. G.
,
Reece
,
C. E.
, and
Kelley
,
M. J.
,
2008
, “
The Mechanism of Electropolishing of Niobium in Hydrofluoric–Sulfuric Acid Electrolyte
,”
J. Electrochem. Soc.
,
155
(
9
), pp.
D563
D568
. 10.1149/1.2945913
28.
Zhao
,
X.
,
Corcoran
,
S. G.
, and
Kelley
,
M. J.
,
2011
, “
Sulfuric Acid-Methanol Electrolytes as an Alternative to Sulfuric-Hydrofluoric Acid Mixtures for Electropolishing of Niobium
,”
J. Appl. Electrochem.
,
41
(
6
), pp.
633
643
. 10.1007/s10800-011-0276-1
29.
Barnes
,
P.
,
Savva
,
A.
,
Dixon
,
K.
,
Bull
,
H.
,
Rill
,
L.
,
Karsann
,
D.
,
Croft
,
S.
,
Schimpf
,
J.
, and
Xiong
,
H.
,
2018
, “
Electropolishing Valve Metals With a Sulfuric Acid-Methanol Electrolyte at Low Temperature
,”
Surf. Coatings Technol.
,
347
(Aug.), pp.
150
156
. 10.1016/j.surfcoat.2018.04.082
30.
Mathiew
,
J. B.
,
Mathiew
,
H. J.
, and
Landolt
,
D.
,
1978
, “
Electropolishing of Titanium in Perchloric Acid-Acetic Acid Solution I: Auger Electron Spectroscopy Study of Anodic Films
,”
J. Electrochem. Soc.
,
125
(
7
), pp.
1039
1042
. 10.1149/1.2131617
31.
Park
,
J. J.
,
Pyun
,
S. I.
, and
Lee
,
S. B.
,
2004
, “
Growth Kinetics of Passivating Oxide Film of Inconel Alloy 600 in 0.1 M Na2SO4 Solution at 25–300 °C Using the Abrading Electrode Technique and Ac Impedance Spectroscopy
,”
Electrochim. Acta
,
49
(
2
), pp.
281
292
. 10.1016/j.electacta.2003.08.010
32.
Kalpakjian
,
S.
,
Vijai Sekar
,
K. S.
, and
Schmid
,
S. R.
,
2014
,
Manufacturing Engineering and Technology
,
Pearson
,
Singapore
.
33.
Hull
,
D.
, and
David
,
J. B.
,
2001
,
Introduction to Dislocations
,
Butterworth-Heinemann
,
London
.
34.
Yazdandoost
,
F.
, and
Mirzaeifar
,
R.
,
2017
, “
Generalized Stacking Fault Energy and Dislocation Properties in NiTi Shape Memory Alloys
,”
J. Alloys Compd.
,
709
(June), pp.
72
81
. 10.1016/j.jallcom.2017.03.090
35.
Wang
,
B.
,
Puzyrev
,
Y. S.
, and
Pantelides
,
S. T.
,
2013
, “
Enhanced Chemical Reactions of Oxygen at Grain Boundaries in Polycrystalline Graphene
,”
Polyhedron
,
64
(Nov.), pp.
158
162
. 10.1016/j.poly.2013.03.032
36.
Ilman
,
K. A.
, and
Herliansyah
,
M. K.
,
2017
, “
The Effect of Electropolishing Parameter on 316L Stainless Steel Surface Roughness for Coronary Stent Application
,”
2017 7th International Annual Engineering Seminar (InAES)
,
Yogyakarta, Indonesia
,
Aug. 1–2
, pp.
1
6
.
37.
Haïdopoulos
,
M.
,
Turgeon
,
S.
,
Sarra-Bournet
,
C.
,
Laroche
,
G.
, and
Mantovani
,
D.
,
2006
, “
Development of an Optimized Electrochemical Process for Subsequent Coating of 316 Stainless Steel for Stent Applications
,”
J. Mater. Sci. Mater. Med.
,
17
(
7
), pp.
647
657
. 10.1007/s10856-006-9228-4
38.
Chen
,
S. C.
,
Tu
,
G. C.
, and
Huang
,
C. A.
,
2005
, “
The Electrochemical Polishing Behavior of Porous Austenitic Stainless Steel (AISI 316L) in Phosphoric-Sulfuric Mixed Acids
,”
Surf. Coatings Technol.
,
200
(
7
), pp.
2065
2071
. 10.1016/j.surfcoat.2005.06.008
39.
Han
,
W.
, and
Kunieda
,
M.
,
2016
, “
Fabrication of Micro-Rods With Electrostatic Induction Feeding ECM
,”
J. Mater. Process. Technol.
,
235
(Sept.), pp.
92
104
. 10.1016/j.jmatprotec.2016.04.015
40.
Han
,
W.
, and
Kunieda
,
M.
,
2017
, “
Research on Improvement of Machining Accuracy of Micro-Rods With Electrostatic Induction Feeding ECM
,”
Precis. Eng.
,
50
(Oct.), pp.
494
505
. 10.1016/j.precisioneng.2017.07.005
41.
Feng
,
Z. F.
,
Cheng
,
X.
,
Dong
,
C.
,
Xu
,
L.
, and
Li
,
X.
,
2010
, “
Passivity of 316L Stainless Steel in Borate Buffer Solution Studied by Mott-Schottky Analysis, Atomic Absorption Spectrometry and X-Ray Photoelectron Spectroscopy
,”
Corros. Sci.
,
52
(
11
), pp.
3646
3653
. 10.1016/j.corsci.2010.07.013
42.
Moulder
,
J. F.
,
William
,
F. S.
, and
Peter
,
E. S.
,
1992
,
Handbook of X-Ray Photoelectron Spectroscopy
,
Perkin-Elmer Corporation
,
Waltham, MA
.
43.
Jorcin
,
J. B.
,
Orazem
,
M. E.
,
Pébère
,
N.
, and
Tribollet
,
B.
,
2006
, “
CPE Analysis by Local Electrochemical Impedance Spectroscopy
,”
Electrochim. Acta
,
51
(
8–9
), pp.
1473
1479
. 10.1016/j.electacta.2005.02.128
44.
Shoar Abouzari
,
M. R.
,
Berkemeier
,
F.
,
Schmitz
,
G.
, and
Wilmer
,
D.
,
2009
, “
On the Physical Interpretation of Constant Phase Elements
,”
Solid State Ionics
,
180
(
14–16
), pp.
922
927
. 10.1016/j.ssi.2009.04.002
45.
ur Rahman
,
Z.
,
Deen
,
K. M.
,
Cano
,
L.
, and
Haider
,
W.
,
2017
, “
The Effects of Parametric Changes in Electropolishing Process on Surface Properties of 316L Stainless Steel
,”
Appl. Surf. Sci.
,
410
(July), pp.
432
444
. 10.1016/j.apsusc.2017.03.081
46.
Shahryari
,
A.
,
Omanovic
,
S.
, and
Szpunar
,
J. A.
,
2008
, “
Electrochemical Formation of Highly Pitting Resistant Passive Films on a Biomedical Grade 316LVM Stainless Steel Surface
,”
Mater. Sci. Eng. C
,
28
(
1
), pp.
94
106
. 10.1016/j.msec.2007.09.002
47.
Lee
,
S. J.
, and
Lai
,
J. J.
,
2003
, “
The Effects of Electropolishing (EP) Process Parameters on Corrosion Resistance of 316L Stainless Steel
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
206
210
. 10.1016/S0924-0136(03)00785-4
48.
Heintz
,
C.
,
Riepe
,
G.
,
Birken
,
L.
,
Kaiser
,
E.
,
Chakfé
,
N.
,
Morlock
,
M.
,
Delling
,
G.
, and
Imig
,
H.
,
2001
, “
Corroded Nitinol Wires in Explanted Aortic Endografts: An Important Mechanism of Failure?
,”
J. Endovasc. Ther.
,
8
(
3
), pp.
248
253
. 10.1177/152660280100800303
You do not currently have access to this content.