Abstract

A silicon wafer is important for the electronic and computer industries. However, subsurface damage (SSD), which is detrimental to the performance and lifetime of a silicon chip, is easily induced in a silicon wafer during a grinding process since silicon is typically a hard and brittle material. Therefore, it is necessary to detect and remove SSD in the subsequent processes. In this study, a polarized laser scattering (PLS) system is installed to detect the SSD in a ground wafer. It is found that not only the subsurface crack but also the residual stress leads to depolarization of an incident light. The effects of residual stress on depolarization are studied. The residual stress results in the photoelasticity, which causes the depolarization of the incident light in the PLS system. The depolarization caused by the residual stress is determined by the directions and the difference of the principal stresses. When the polarization direction of the incident light is aligned with one of the principal stresses, the effects of the residual stress can be minimized; therefore, the subsurface crack can be quantitatively estimated by PLS.

References

References
1.
Pei
,
Z. J.
,
Billingsley
,
S. R.
, and
Miura
,
S.
,
1999
, “
Grinding Induced Subsurface Cracks in Silicon Wafers
,”
Int. J. Mach. Tools Manuf.
,
39
(
7
), pp.
1103
1116
. 10.1016/S0890-6955(98)00079-0
2.
Zhou
,
P.
,
Xu
,
S.
,
Wang
,
Z.
,
Yan
,
Y.
,
Kang
,
R.
, and
Guo
,
D.
,
2016
, “
A Load Identification Method for the Grinding Damage Induced Stress (GDIS) Distribution in Silicon Wafers
,”
Int. J. Mach. Tools Manuf.
,
107
(
Aug.
), pp.
1
7
. 10.1016/j.ijmachtools.2016.04.010
3.
Dong
,
Z.
,
Gao
,
S.
,
Huang
,
H.
,
Kang
,
R.
, and
Wang
,
Z.
,
2016
, “
Surface Integrity and Removal Mechanism of Chemical Mechanical Grinding of Silicon Wafers Using a Newly Developed Wheel
,”
Int. J. Adv. Manuf. Technol.
,
83
(
5–8
), pp.
1231
1239
. 10.1007/s00170-015-7584-2
4.
Zhang
,
J. M.
,
Sun
,
J. G.
, and
Pei
,
Z. J.
,
2003
, “
Application of Laser Scattering on Detection of Subsurface Damage in Silicon Wafers
,”
ASME 2003 International Mechanical Engineering Congress and Exposition
,
Washington, DC
,
Nov. 15–21
, pp.
15
24
.10.1115/IMECE2003-41105
5.
Sun
,
J.
,
Chen
,
P.
,
Qin
,
F.
,
An
,
T.
,
Yu
,
H.
, and
He
,
B.
,
2018
, “
Modelling and Experimental Study of Roughness in Silicon Wafer Self-Rotating Grinding
,”
Precis. Eng.
,
51
(
Jan.
), pp.
625
637
. 10.1016/j.precisioneng.2017.11.003
6.
Sun
,
J.
,
Qin
,
F.
,
Chen
,
P.
, and
An
,
T.
,
2016
, “
A Predictive Model of Grinding Force in Silicon Wafer Self-Rotating Grinding
,”
Int. J. Mach. Tools Manuf.
,
109
(
Oct.
), pp.
74
86
. 10.1016/j.ijmachtools.2016.07.009
7.
Gao
,
S.
,
Kang
,
R.
,
Dong
,
Z.
, and
Zhang
,
B.
,
2013
, “
Edge Chipping of Silicon Wafers in Diamond Grinding
,”
Int. J. Mach. Tools Manuf.
,
64
(
Jan.
), pp.
31
37
. 10.1016/j.ijmachtools.2012.08.002
8.
Cai
,
M. B.
,
Li
,
X. P.
, and
Rahman
,
M.
,
2007
, “
Study of the Mechanism of Nanoscale Ductile Mode Cutting of Silicon Using Molecular Dynamics Simulation
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
75
80
. 10.1016/j.ijmachtools.2006.02.016
9.
Mukaida
,
M.
, and
Yan
,
J.
,
2017
, “
Ductile Machining of Single-Crystal Silicon for Microlens Arrays by Ultraprecision Diamond Turning Using a Slow Tool Servo
,”
Int. J. Mach. Tools Manuf.
,
115
(
Apr.
), pp.
2
14
. 10.1016/j.ijmachtools.2016.11.004
10.
Gao
,
S.
,
Dong
,
Z.
,
Kang
,
R.
,
Zhang
,
B.
, and
Guo
,
D.
,
2015
, “
Warping of Silicon Wafers Subjected to Back-Grinding Process
,”
Precis. Eng.
,
40
(
Apr.
), pp.
87
93
. 10.1016/j.precisioneng.2014.10.009
11.
Pei
,
Z. J.
,
Fisher
,
G. R.
, and
Liu
,
J.
,
2008
, “
Grinding of Silicon Wafers: A Review From Historical Perspectives
,”
Int. J. Mach. Tools Manuf.
,
48
(
12–13
), pp.
1297
1307
. 10.1016/j.ijmachtools.2008.05.009
12.
Zhou
,
P.
,
Yan
,
Y.
,
Huang
,
N.
,
Wang
,
Z.
,
Kang
,
R.
, and
Guo
,
D.
,
2017
, “
Residual Stress Distribution in Silicon Wafers Machined by Rotational Grinding
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081012
. 10.1115/1.4036125
13.
Esmaeilzare
,
A.
,
Rahimi
,
A.
, and
Rezaei
,
S. M.
,
2014
, “
Investigation of Subsurface Damages and Surface Roughness in Grinding Process of Zerodur® Glass–Ceramic
,”
Appl. Surf. Sci.
,
313
(
Sept.
), pp.
67
75
. 10.1016/j.apsusc.2014.05.137
14.
Gao
,
R.
,
Wang
,
H.
,
Wang
,
C.
,
Feng
,
S.
, and
Zhu
,
B.
,
2017
, “
Characterization Methods of Subsurface Cracks in Grinding of Optical Elements
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
250
(
1
), p.
12025
. 10.1088/1757-899X/250/1/012025
15.
Li
,
S.
,
Wang
,
Z.
, and
Wu
,
Y.
,
2008
, “
Relationship Between Subsurface Damage and Surface Roughness of Optical Materials in Grinding and Lapping Processes
,”
J. Mater. Process. Technol.
,
205
(
1–3
), pp.
34
41
. 10.1016/j.jmatprotec.2007.11.118
16.
Young
,
H. T.
,
Liao
,
H. T.
, and
Huang
,
H. Y.
,
2006
, “
Surface Integrity of Silicon Wafers in Ultra Precision Machining
,”
Int. J. Adv. Manuf. Technol.
,
29
(
3–4
), pp.
372
378
. 10.1007/s00170-005-2508-1
17.
Li
,
H. N.
,
Yu
,
T. B.
,
Da Zhu
,
L.
, and
Wang
,
W. S.
,
2017
, “
Analytical Modeling of Grinding-Induced Subsurface Damage in Monocrystalline Silicon
,”
Mater. Des.
,
130
(
Sept.
), pp.
250
262
. 10.1016/j.matdes.2017.05.068
18.
Yan
,
J.
,
Asami
,
T.
,
Harada
,
H.
, and
Kuriyagawa
,
T.
,
2009
, “
Fundamental Investigation of Subsurface Damage in Single Crystalline Silicon Caused by Diamond Machining
,”
Precis. Eng.
,
33
(
4
), pp.
378
386
. 10.1016/j.precisioneng.2008.10.008
19.
Yin
,
J.
,
Bai
,
Q.
, and
Zhang
,
B.
,
2018
, “
Methods for Detection of Subsurface Damage: A Review
,”
Chinese J. Mech. Eng.
,
31
(
May
), p.
41
. 10.1186/s10033-018-0229-2
20.
He
,
S.
,
Zheng
,
T.
, and
Danyluk
,
S.
,
2004
, “
Analysis and Determination of the Stress-Optic Coefficients of Thin Single Crystal Silicon Samples
,”
J. Appl. Phys.
,
96
(
6
), pp.
3103
3109
. 10.1063/1.1774259
21.
Jagailloux
,
F.
,
Valle
,
V.
,
Dupré
,
J.-C.
,
Penot
,
J.-D.
, and
Chabli
,
A.
,
2016
, “
Applied Photoelasticity for Residual Stress Measurement Inside Crystal Silicon Wafers for Solar Applications
,”
Strain
,
52
(
4
), pp.
355
368
. 10.1111/str.12185
22.
Geiler
,
H. D.
,
Wagner
,
M.
,
Karge
,
H.
,
Paulsen
,
M.
, and
Schmolke
,
R.
,
2002
, “
Photoelastic Stress Evaluation and Defect Monitoring in 300-mm-Wafer Manufacturing
,”
Mater. Sci. Semicond. Process.
,
5
(
4–5
), pp.
445
455
. 10.1016/S1369-8001(02)00138-5
23.
Geiler
,
H. D.
,
Kürner
,
W.
, and
Storbeck
,
O.
,
1999
, “
Photoelastic Imaging of Process Induced Defects in 300mm-Silicon Wafers
,”
MRS Proc.
,
591
(
Feb.
), p.
249
. 10.1557/PROC-591-249
24.
Skenes
,
K.
,
Prasath
,
R. G. R.
, and
Danyluk
S.
,
2014
, “Polariscopy Measurement of Residual Stress in Thin Silicon Wafers,”
Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems
, Vol.
8
,
M.
Rossi
,
M.
Sasso
,
N.
Connesson
,
R.
Singh
,
A.
DeWald
,
D.
Backman
, and
P.
Gloeckner
, eds.,
Springer International Publishing
,
Cham
, pp.
79
85
.
25.
Gogotsi
,
Y.
,
Baek
,
C.
, and
Kirscht
,
F.
,
1999
, “
Raman Microspectroscopy Study of Processing-Induced Phase Transformations and Residual Stress in Silicon
,”
Semicond. Sci. Technol.
,
14
(
10
), p.
936
. 10.1088/0268-1242/14/10/310
26.
Suzuki
,
T.
,
Nishino
,
Y.
, and
Yan
,
J.
,
2017
, “
Mechanisms of Material Removal and Subsurface Damage in Fixed-Abrasive Diamond Wire Slicing of Single-Crystalline Silicon
,”
Precis. Eng.
,
50
(
Oct.
), pp.
32
43
. 10.1016/j.precisioneng.2017.04.011
27.
Ravindra
,
D.
,
Ghantasala
,
M. K.
, and
Patten
,
J.
,
2012
, “
Ductile Mode Material Removal and High-Pressure Phase Transformation in Silicon During Micro-Laser Assisted Machining
,”
Precis. Eng.
,
36
(
2
), pp.
364
367
. 10.1016/j.precisioneng.2011.12.003
28.
Bismayer
,
U.
,
Brinksmeier
,
E.
,
Güttler
,
B.
,
Seibt
,
H.
, and
Menz
,
C.
,
1994
, “
Measurement of Subsurface Damage in Silicon Wafers
,”
Precis. Eng.
,
16
(
2
), pp.
139
144
. 10.1016/0141-6359(94)90199-6
29.
Balogun
,
O.
,
Cole
,
G. D.
,
Huber
,
R.
,
Chinn
,
D.
,
Murray
,
T. W.
, and
Spicer
,
J. B.
,
2011
, “
High-Spatial-Resolution Sub-Surface Imaging Using a Laser-Based Acoustic Microscopy Technique
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
,
58
(
1
), pp.
226
233
. 10.1109/TUFFC.2011.1789
30.
Ishikawa
,
I.
,
Kanda
,
H.
,
Katakura
,
K.
, and
Semba
,
T.
,
1989
, “
Measurement of a Damaged Layer Thickness With Reflection Acoustic Microscope
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
,
36
(
6
), pp.
587
592
. 10.1109/58.39108
31.
Fine
,
K. R.
,
Garbe
,
R.
,
Gip
,
T.
, and
Nguyen
,
Q.
,
2005
, “
Non-Destructive Real-Time Direct Measurement of Subsurface Damage
,”
Proceedings Volume 5799, Modeling, Simulation, and Verification of Space-based Systems II
,
Orlando, FL
,
May 19
, pp.
5796
5799
.
32.
Bertussi
,
B.
,
Cormont
,
P.
,
Palmier
,
S.
,
Legros
,
P.
, and
Rullier
,
J.-L.
,
2009
, “
Initiation of Laser-Induced Damage Sites in Fused Silica Optical Components
,”
Opt. Express.
,
17
(
14
), pp.
11469
11479
. 10.1364/OE.17.011469
33.
Lu
,
W. K.
,
Sun
,
J. G.
, and
Pei
,
Z. J.
,
2006
, “
Subsurface Damage Measurement in Silicon Wafers With Cross-Polarisation Confocal Microscopy
,”
Int. J. Nanomanuf.
,
1
(
2
), pp.
272
282
. 10.1504/IJNM.2006.012198
34.
Zhang
,
J. M.
, and
Sun
,
J. G.
,
2005
, “
Quantitative Assessment of Subsurface Damage Depth in Silicon Wafers Based on Optical Transmission Properties
,”
Int. J. Manuf. Technol. Manag.
,
7
(
5/6
), pp.
540
552
. 10.1504/IJMTM.2005.007702
35.
Winn
,
A. J.
, and
Yeomans
,
J. A.
,
1996
, “
A Study of Microhardness Indentation Fracture in Alumina Using Confocal Scanning Laser Microscopy
,”
Philos. Mag. A
,
74
(
5
), pp.
1253
1263
. 10.1080/01418619608239725
36.
Zheng
,
T.
, and
Danyluk
,
S.
,
2002
, “
Study of Stresses in Thin Silicon Wafers With Near-Infraredphase Stepping Photoelasticity
,”
J. Mater. Res.
,
17
(
1
), pp.
36
42
. 10.1557/JMR.2002.0008
37.
Korkh
,
Y. V.
,
Burkhanov
,
A. M.
, and
Rinkevich
,
A. B.
,
2009
, “
Scanning Acoustic Microscope for Visualization of Microflaws in Solids
,”
Russ. J. Nondestruct. Test.
,
45
(
10
), pp.
677
684
. 10.1134/S1061830909100027
38.
Zhang
,
J. M.
,
Sun
,
J. G.
, and
Pei
,
Z. J.
,
2004
, “
Optical Transmission Properties of Silicon Wafters: Theoretical Analysis
,”
ASME 2004 International Mechanical Engineering Congress and Exposition
,
Anaheim, CA
,
Nov. 13–19
, pp.
17
24
.
39.
Corby
,
T. W.
, and
Nickola
,
W. E.
,
1997
, “
Residual Strain Measurement Using Photoelastic Coatings
,”
Opt. Lasers Eng.
,
27
(
1
), pp.
111
123
. 10.1016/S0143-8166(95)00012-7
40.
Zhang
,
J. M.
,
Sun
,
J. G.
, and
Pei
,
Z. J.
,
2002
, “
Subsurface Damage Measurement in Silicon Wafers by Laser Scattering
,”
Trans Namri/Sme.
,
30
, pp.
535
542
.
41.
Ramesh
,
K.
,
2000
, “Fusion of Digital Photoelasticity, Rapid Prototyping and Rapid Tooling Technologies,”
Digital Photoelasticity: Advanced Techniques and Applications
,
K.
Ramesh
, ed.,
Springer
,
Berlin
, pp.
347
367
.
42.
Ganapati
,
V.
,
Schoenfelder
,
S.
,
Castellanos
,
S.
,
Oener
,
S.
,
Koepge
,
R.
,
Sampson
,
A.
,
Marcus
,
M. A.
,
Lai
,
B.
,
Morhenn
,
H.
,
Hahn
,
G.
,
Bagdahn
,
J.
, and
Buonassisi
,
T.
,
2010
, “
Infrared Birefringence Imaging of Residual Stress and Bulk Defects in Multicrystalline Silicon
,”
J. Appl. Phys.
,
108
(
6
), p.
63528
. 10.1063/1.3468404
43.
Gao
,
S.
,
Kang
,
R. K.
,
Guo
,
D. M.
, and
Huang
,
Q. S.
,
2010
, “
Study on the Subsurface Damage Distribution of the Silicon Wafer Ground by Diamond Wheel
,”
Adv. Mater. Res.
,
142
(
Oct.
), pp.
126
128
.10.4028/www.scientific.net/AMR.142.126
44.
Zhou
,
L.
,
Tian
,
Y. B.
,
Huang
,
H.
,
Sato
,
H.
, and
Shimizu
,
J.
,
2011
, “
A Study on the Diamond Grinding of Ultra-Thin Silicon Wafers
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
226
(
1
), pp.
66
75
. 10.1177/0954405411414768
You do not currently have access to this content.