Abstract

Face milling is widely used in machining processes, aimed at providing workpieces with high surface quality. The chatter generated in face milling could lead to tremendous damage to machine tools, poor machined surface quality, and loss of processing efficiency. Most related researches have been focused on the modeling of spindle dynamics and discretization algorithms for chatter prediction. However, few published articles have taken the geometric characteristics of workpieces into consideration, especially for workpieces with discontinuous surfaces in face milling, which leads to poor accuracy of chatter prediction as well as the waste of processing efficiency. To overcome this shortage, a novel dynamic model for the face milling process is built in this paper, considering the cutting insert engagement based on the geometric characteristics of the workpieces and the tool path. The stability lobe diagrams (SLDs) applicable to workpieces with discontinuous surfaces are constructed. A process parameter optimization model is developed to maximize the chatter-free processing efficiency of the face milling process. The sensitivity analysis is utilized to simplify the objective function, and the genetic algorithm is employed to solve the optimization model. The proposed approach is validated by an experimental case study of an engine block, improving the chatter-free material removal rate by 53.3% in comparison to the classic approach.

References

References
1.
Wang
,
M.
,
Ken
,
T.
,
Du
,
S.
, and
Xi
,
L.
,
2015
, “
Tool Wear Monitoring of Wiper Inserts in Multi-Insert Face Milling Using Three-Dimensional Surface Form Indicators
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031006
. 10.1115/1.4028924
2.
Du
,
S.
,
Liu
,
C.
, and
Huang
,
D.
,
2015
, “
A Shearlet-Based Separation Method of 3D Engineering Surface Using High Definition Metrology
,”
Precis. Eng.
,
40
, pp.
55
73
. 10.1016/j.precisioneng.2014.10.004
3.
Shao
,
Y.
,
Yin
,
Y.
,
Du
,
S.
,
Xia
,
T.
, and
Xi
,
L.
,
2018
, “
Leakage Monitoring in Static Sealing Interface Based on Three Dimensional Surface Topography Indicator
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101003
. 10.1115/1.4040620
4.
Abele
,
E.
, and
Fiedler
,
U.
,
2004
, “
Creating Stability Lobe Diagrams During Milling
,”
CIRP Ann.
,
53
(
1
), pp.
309
312
. 10.1016/S0007-8506(07)60704-5
5.
Du
,
S.
,
Liu
,
C.
, and
Xi
,
L.
,
2015
, “
A Selective Multiclass Support Vector Machine Ensemble Classifier for Engineering Surface Classification Using High Definition Metrology
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011003
. 10.1115/1.4028165
6.
Eksioglu
,
C.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2012
, “
Discrete-time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061006
. 10.1115/1.4007622
7.
Du
,
S.
,
Huang
,
D.
, and
Wang
,
H.
,
2015
, “
An Adaptive Support Vector Machine-Based Workpiece Surface Classification System Using High Definition Metrology
,”
IEEE Trans. Instrum. Meas.
,
64
(
10
), pp.
2590
2604
. 10.1109/TIM.2015.2418684
8.
Suriano
,
S.
,
Wang
,
H.
,
Shao
,
C.
,
Hu
,
S. J.
, and
Sekhar
,
P.
,
2015
, “
Progressive Measurement and Monitoring for Multi-Resolution Data in Surface Manufacturing Considering Spatial and Cross Correlations
,”
IIE Trans.
,
47
(
10
), pp.
1033
1052
. 10.1080/0740817X.2014.998389
9.
Suriano
,
S.
,
Wang
,
H.
, and
Hu
,
S. J.
,
2012
, “
Sequential Monitoring of Surface Spatial Variation in Automotive Machining Processes Based on High Definition Metrology
,”
J. Manuf. Syst.
,
31
(
1
), pp.
8
14
. 10.1016/j.jmsy.2011.04.006
10.
Tobias
,
S. A.
,
1965
,
Machine Tool Vibration
,
Wiley
,
New York
.
11.
Tlusty
,
J.
,
1999
,
Manufacturing Process and Equipment
,
Prentice Hall
,
New Jersey
.
12.
Sridhar
,
R.
,
Hohn
,
R. E.
, and
Long
,
G. W.
,
1968
, “
A Stability Algorithm for the General Milling Process
,”
ASME J. Eng. Ind.
,
90
(
2
), pp.
330
334
. 10.1115/1.3604637
13.
Zheng
,
C. M.
,
Wang
,
J. J. J.
, and
Sung
,
C. F.
,
2014
, “
Analytical Prediction of the Critical Depth of Cut and Worst Spindle Speeds for Chatter in End Milling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011003
. 10.1115/1.4025452
14.
Minis
,
I.
,
Yanushevsky
,
R.
,
Tembo
,
A.
, and
Hocken
,
R.
,
1990
, “
Analysis of Linear and Nonlinear Chatter in Milling
,”
CIRP Ann.
,
39
(
1
), pp.
459
462
. 10.1016/S0007-8506(07)61096-8
15.
Minis
,
I.
, and
Yanushevsky
,
R.
,
1993
, “
A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling
,”
J. Eng. Ind.
,
115
(
1
), pp.
1
8
. 10.1115/1.2901633
16.
Movahhedy
,
M. R.
, and
Mosaddegh
,
P.
,
2006
, “
Prediction of Chatter in High Speed Milling Including Gyroscopic Effects
,”
Int. J. Mach. Tool Manuf.
,
46
(
9
), pp.
996
1001
. 10.1016/j.ijmachtools.2005.07.043
17.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tool Manuf.
,
50
(
5
), pp.
502
509
. 10.1016/j.ijmachtools.2010.01.003
18.
Li
,
Z.
,
Yang
,
Z.
,
Peng
,
Y.
,
Zhu
,
F.
, and
Ming
,
X.
,
2016
, “
Prediction of Chatter Stability for Milling Process Using Runge-Kutta-Based Complete Discretization Method
,”
Int. J. Adv. Manuf. Technol.
,
86
(
1–4
), pp.
943
952
. 10.1007/s00170-015-8207-7
19.
Dai
,
Y.
,
Li
,
H.
,
Xing
,
X.
, and
Hao
,
B.
,
2018
, “
Prediction of Chatter Stability for Milling Process Using Precise Integration Method
,”
Precis. Eng.
,
52
, pp.
152
157
. 10.1016/j.precisioneng.2017.12.003
20.
Ismail
,
F.
, and
Soliman
,
E.
,
1997
, “
A New Method for the Identification of Stability Lobes in Machining
,”
Int. J. Mach. Tools Manuf.
,
37
(
6
), pp.
763
774
. 10.1016/S0890-6955(96)00032-6
21.
Lee
,
S.
, and
Park
,
J. K.
,
2018
, “
Experimental Verification of Dynamic Behavior of a Capsule-Type Modular Machine Tool for Multifunctional Processes
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
014501
. 10.1115/1.4037999
22.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2018
, “
Time-Domain Modeling of Varying Dynamic Characteristics in Thin-Wall Machining Using Perturbation and Reduced-Order Substructuring Methods
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011015
. 10.1115/1.4038000
23.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2017
, “
Frequency Domain Prediction of Varying Thin-Walled Workpiece Dynamics in Machining
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071013
. 10.1115/1.4036124
24.
Smith
,
S.
, and
Tlusty
,
J.
,
1993
, “
Efficient Simulation Programs for Chatter in Milling
,”
CIRP Ann.
,
42
(
1
), pp.
463
466
. 10.1016/S0007-8506(07)62486-X
25.
Cao
,
H.
,
Li
,
B.
, and
He
,
Z.
,
2012
, “
Chatter Stability of Milling with Speed-Varying Dynamics of Spindles
,”
Int. J. Mach. Tool Manuf.
,
52
(
1
), pp.
50
58
. 10.1016/j.ijmachtools.2011.09.004
26.
Quintana
,
G.
,
Ciurana
,
J.
,
Ferrer
,
I.
, and
Rodriguez
,
C. A.
,
2009
, “
Sound Mapping for Identification of Stability Lobe Diagrams in Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
49
(
3
), pp.
203
211
. 10.1016/j.ijmachtools.2008.11.008
27.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann. Manuf. Technol.
,
44
(
1
), pp.
357
362
. 10.1016/S0007-8506(07)62342-7
28.
Merdol
,
S. D.
, and
Altintaş
,
Y.
,
2014
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
. 10.1115/1.1765139
29.
Jensen
,
S. A.
, and
Shin
,
Y. C.
,
1999
, “
Stability Analysis in Face Milling Operations, Part 1: Theory of Stability Lobe Prediction
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
600
605
. 10.1115/1.2833075
30.
Jensen
,
S. A.
, and
Shin
,
Y. C.
,
1999
, “
Stability Analysis in Face Milling Operations, Part 2: Experimental Validation and Influencing Factors
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
606
614
. 10.1115/1.2833076
31.
Niu
,
J.
,
Ding
,
Y.
,
Geng
,
Z.
,
Zhu
,
L.
, and
Ding
,
H.
,
2018
, “
Patterns of Regenerative Milling Chatter Under Joint Influences of Cutting Parameters, Tool Geometries, and Runout
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121004
. 10.1115/1.4041250
32.
Caliskan
,
H.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2018
, “
On-Line Energy-Based Milling Chatter Detection
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111012
. 10.1115/1.4040617
33.
Tang
,
X.
,
Zhu
,
Z.
,
Yan
,
R.
,
Chen
,
C.
,
Peng
,
F.
,
Zhang
,
M.
, and
Li
,
Y.
,
2018
, “
Stability Prediction Based Effect Analysis of Tool Orientation on Machining Efficiency for Five-Axis Bull-Nose End Milling
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121015
. 10.1115/1.4041426
34.
Baek
,
D. K.
,
Ko
,
T. J.
, and
Kim
,
H. S.
,
2001
, “
Optimization of Feedrate in a Face Milling Operation Using a Surface Roughness Model
,”
Int. J. Mach. Tools Manuf.
,
41
(
3
), pp.
451
462
. 10.1016/S0890-6955(00)00039-0
35.
Song
,
Q.
,
Ju
,
G.
,
Liu
,
Z.
, and
Ai
,
X.
,
2014
, “
Subdivision of Chatter-Free Regions and Optimal Cutting Parameters Based on Vibration Frequencies for Peripheral Milling Process
,”
Int. J. Mech. Sci.
,
83
, pp.
172
183
. 10.1016/j.ijmecsci.2014.04.002
36.
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
Note on a Novel Method for Machining Parameters Optimization in a Chatter-Free Milling Process
,”
Int. J. Mach. Tools Manuf.
,
72
, pp.
11
15
. 10.1016/j.ijmachtools.2013.04.006
37.
Zhang
,
X.
,
Zhu
,
L.
,
Zhang
,
D.
,
Ding
,
H.
, and
Xiong
,
Y.
,
2012
, “
Numerical Robust Optimization of Spindle Speed for Milling Process with Uncertainties
,”
Int. J. Mach. Tools Manuf.
,
61
, pp.
9
19
. 10.1016/j.ijmachtools.2012.05.002
38.
Zhang
,
X.
,
Zhang
,
D.
,
Cao
,
L.
,
Huang
,
T.
,
Leopold
,
J.
, and
Ding
,
H.
,
2017
, “
Minimax Optimization Strategy for Process Parameters Planning: Toward Interference-Free Between Tool and Flexible Workpiece in Milling Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051010
. 10.1115/1.4035184
39.
Nguyen
,
H.
,
Wang
,
H.
, and
Hu
,
S.
,
2012
, “
Characterization of Cutting Force Induced Surface Shape Variation Using High-Definition Metrology
,”
ASME 2012 International Manufacturing Science and Engineering Conference
,
Notre Dame, IN
,
June 4–8
, pp.
641
650
. http://dx.doi,org/10.1115/msec2012-7276
40.
Wang
,
M.
,
Shao
,
Y.
,
Du
,
S.
, and
Xi
,
L.
,
2015
, “
A Diffusion Filter for Discontinuous Surface Measured by High Definition Metrology
,”
Int. J. Precis. Eng. Manuf.
,
16
(
10
), pp.
2057
2062
. 10.1007/s12541-015-0267-y
41.
Altintas
,
Y.
, and
Lee
,
P.
,
1996
, “
A General Mechanics and Dynamics Model for Helical End Mills
,”
ClRP Ann.
,
45
(
1
), pp.
59
64
. 10.1016/S0007-8506(07)63017-0
42.
Huang
,
D.
,
Du
,
S.
,
Li
,
G.
, and
Wu
,
Z.
,
2017
, “
A Systematic Approach for Online Minimizing Volume Difference of Multiple Chambers in Machining Processes Based on High-Definition Metrology
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081003
. 10.1115/1.4035897
43.
Huang
,
D.
,
Du
,
S.
,
Li
,
G.
,
Zhao
,
C.
, and
Deng
,
Y.
,
2018
, “
Detection and Monitoring of Defects on Three-Dimensional Curved Surfaces Based on High-Density Point Cloud Data
,”
Precis. Eng.
,
53
, pp.
79
95
. 10.1016/j.precisioneng.2018.03.001
44.
Li
,
G.
,
Du
,
S.
,
Huang
,
D.
,
Zhao
,
C.
, and
Deng
,
Y.
,
2019
, “
Elastic Mechanics-Based Fixturing Scheme Optimization of Variable Stiffness Structure Workpieces for Surface Quality Improvement
,”
Precis. Eng.
,
56
, pp.
343
363
. 10.1016/j.precisioneng.2019.01.004
45.
Du
,
S.
,
Liu
,
T.
,
Huang
,
D.
, and
Li
,
G.
,
2018
, “
A Fast and Adaptive Bi-Dimensional Empirical Mode Decomposition Approach for Filtering of Workpiece Surfaces Using High Definition Metrology
,”
J. Manuf. Syst.
,
46
, pp.
247
263
. 10.1016/j.jmsy.2018.01.005
46.
Zhang
,
J. Z.
,
Chen
,
J. C.
, and
Kirby
,
E. D.
,
2007
, “
Surface Roughness Optimization in an End-Milling Operation Using the Taguchi Design Method
,”
J. Mater. Process. Technol.
,
184
(
1–3
), pp.
233
239
. 10.1016/j.jmatprotec.2006.11.029
47.
Asiltürk
,
I.
, and
Neşeli
,
S.
,
2012
, “
Multi Response Optimisation of CNC Turning Parameters via Taguchi Method-Based Response Surface Analysis
,”
Measurement
,
45
(
4
), pp.
785
794
. 10.1016/j.measurement.2011.12.004
48.
Mhapsekar
,
K.
,
McConaha
,
M.
, and
Anand
,
S.
,
2018
, “
Additive Manufacturing Constraints in Topology Optimization for Improved Manufacturability
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051017
. 10.1115/1.4039198
49.
Lu
,
H. S.
,
Chang
,
C. K.
,
Hwang
,
N. C.
, and
Chung
,
C. T.
,
2009
, “
Grey Relational Analysis Coupled With Principal Component Analysis for Optimization Design of the Cutting Parameters in High-Speed End Milling
,”
J. Mater. Process. Technol.
,
209
(
8
), pp.
3808
3817
. 10.1016/j.jmatprotec.2008.08.030
50.
Pang
,
L.
, and
Kishawy
,
H. A.
,
2012
, “
Modified Primary Shear Zone Analysis for Identification of Material Mechanical Behavior During Machining Process Using Genetic Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
134
(
4
), p.
041003
. 10.1115/1.4006768
51.
Kim
,
H. S.
, and
Ehmann
,
K. F.
,
1993
, “
A Cutting Force Model for Face Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
33
(
5
), pp.
651
673
. 10.1016/0890-6955(93)90099-G
52.
Wan
,
M.
,
Zhang
,
W.
,
Dang
,
J.
, and
Yang
,
Y.
,
2009
, “
New Procedures for Calibration of Instantaneous Cutting Force Coefficients and Cutter Runout Parameters in Peripheral Milling
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1144
1151
. 10.1016/j.ijmachtools.2009.08.005
53.
Wan
,
M.
,
Pan
,
W.
,
Zhang
,
W.
,
Ma
,
Y.
, and
Yang
,
Y.
,
2014
, “
A Unified Instantaneous Cutting Force Model for Flat End Mills with Variable Geometries
,”
J. Mater. Process. Technol.
,
214
(
3
), pp.
641
650
. 10.1016/j.jmatprotec.2013.10.016
54.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling-Part I: General Formulation
,”
J. Dyn. Syst., Meas., Control
,
120
(
1
), pp.
22
30
. 10.1115/1.2801317
55.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling-Part II: Application of the General Formulation to Common Milling Systems
,”
J. Dyn. Syst., Meas., Control
,
120
(
1
), pp.
31
36
. 10.1115/1.2801318
56.
Dunham
,
W.
,
1990
,
Journey Through Genius: The Great Theorems of Mathematics
,
Wiley
,
New York
.
57.
Svetlik
,
M.
,
Radojicic
,
M.
,
Radovic
,
S.
, and
Simic-Muller
,
K.
,
2018
, “
Justifying Euler's Formula Through Motion in a Plane
,”
Math. Enthusiast
,
15
(
3
), pp.
397
406
.
58.
Aderiani
,
A. R.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2018
, “
A Multistage Approach to the Selective Assembly of Components Without Dimensional Distribution Assumptions
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071015
. 10.1115/1.4039767
59.
Schmitz
,
T. L.
, and
Smith
,
K. S.
,
2008
,
Machining Dynamics: Frequency Response to Improved Productivity
,
Springer Science & Business Media
,
Berlin
.
60.
Soori
,
M.
,
Arezoo
,
B.
, and
Habibi
,
M.
,
2016
, “
Tool Deflection Error of Three-Axis Computer Numerical Control Milling Machines, Monitoring and Minimizing by a Virtual Machining System
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081005
. 10.1115/1.4032393
61.
Bosetti
,
P.
,
Bort
,
C. M. G.
, and
Bruschi
,
S.
,
2013
, “
Identification of Johnson-Cook and Tresca's Parameters for Numerical Modeling of AISI-304 Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051021
. 10.1115/1.4025340
You do not currently have access to this content.