Shape control is a critical task in the composite fuselage assembly process due to the dimensional variabilities of incoming fuselages. To realize fuselage shape adjustment, actuators are used to pull or push several points on a fuselage. Given a fixed number of actuators, the locations of actuators on a fuselage will impact on the effectiveness of shape control. Thus, it is important to determine the optimal placement of actuators in the fuselage shape control problem. In current practice, the actuators are placed with equal distance along the edge of a fuselage without considering its incoming dimensional shape. Such practice has two limitations: (1) it is non-optimal and (2) larger actuator forces may be applied for some locations than needed. This paper proposes an optimal actuator placement methodology for efficient composite fuselage shape control by developing a sparse learning model and corresponding parameter estimation algorithm. The case study shows that our proposed method achieves the optimal actuator placement for shape adjustments of the composite fuselage.

References

References
1.
Chawla
,
K. K.
,
2012
,
Composite Materials: Science and Engineering
,
Springer Science & Business Media
,
New York
. Chap. 5.
2.
Gates
,
D.
,
2007
, “
Boeing Finds 787 Pieces Aren’t Quite A Perfect Fit
,” Seattle Times aerospace report,
Seattle Times
, http://www.seattletimes.com/business/boeing-finds-787-pieces-arent-quite-a-perfect-fit/.
3.
Wen
,
Y.
,
Yue
,
X.
,
Hunt
,
J. H.
, and
Shi
,
J.
,
2018
, “
Feasibility Analysis of Composite Fuselage Shape Control Via Finite Element Analysis
,”
J. Manuf. Syst.
,
46
, pp.
272
281
.
4.
Yue
,
X.
,
Wen
,
Y.
,
Hunt
,
J. H.
, and
Shi
,
J.
,
2018
, “
Surrogate Model-Based Control Considering Uncertainties for Composite Fuselage Assembly. ASME Transactions
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041017
.
5.
Morris
,
K.
, and
Yang
,
S.
,
2015
, “
Comparison of Actuator Placement Criteria for Control of Structures
,”
J. Sound Vib.
,
353
, pp.
1
18
.
6.
Chee
,
C.
,
Tong
,
L.
, and
Steven
,
G. P.
,
2001
, “
Static Shape Control of Composite Plates Using a Curvature–Displacement Based Algorithm
,”
Int. J. Solids Struct.
,
38
(
36–37
), pp.
6381
6403
.
7.
Haftka
,
R. T.
, and
Adelman
,
H. M.
,
1985
, “
An Analytical Investigation of Shape Control of Large Space Structures by Applied Temperatures
,”
AIAA J.
,
23
(
3
), pp.
450
457
.
8.
Burdisso
,
R. A.
, and
Haftka
,
R. T.
,
1990
, “
Statistical Analysis of Static Shape Control in Space Structures
,”
AIAA J.
,
28
(
8
), pp.
1504
1508
.
9.
Hakim
,
S.
, and
Fuchs
,
M.
,
1995
, “
Optimal Actuator Placement with Minimum Worst Case Distortion Criterion (Space Truss Structures)
,”
36th Structures, Structural Dynamics and Materials Conference
,
New Orleans, LA
,
Apr. 10–13
.
10.
Haftka
,
R. T.
, and
Adelman
,
H. M.
,
1985
, “
Selection of Actuator Locations for Static Shape Control of Large Space Structures by Heuristic Integer Programing
,”
Adv. Trends Struct Dyn.
,
20
(
1–3
), pp.
575
582
.
11.
Burdisso
,
R. A.
, and
Haftka
,
R. T.
,
1989
, “
Optimal Location of Actuators for Correcting Distortions in Large Truss Structures
,”
AIAA J.
,
27
(
10
), pp.
1406
1411
.
12.
Ponslet
,
E.
,
Haftka
,
R.
, and
Cudney
,
H.
,
1993
, “
Optimal Placement of Tuning Masses on Truss Structures by Genetic Algorithms
,”
34th Structures, Structural Dynamics and Materials Conference
,
La Jolla, CA
,
Apr. 19–22
.
13.
Jiao
,
Y.
, and
Djurdjanovic
,
D.
,
2008
, “
Allocation of Flexible Tooling for Optimal Stochastic Multistation Manufacturing Process Quality Control
,”
ASME 2008 International Manufacturing Science and Engineering Conference Collocated with the 3rd JSME/ASME International Conference on Materials and Processing
,
Evanston, IL
,
Oct. 7–10
.
14.
Furuya
,
H.
, and
Haftka
,
R. T.
,
1995
, “
Placing Actuators on Space Structures by Genetic Algorithms and Effectiveness Indices
,”
Struct. Optim.
,
9
(
2
), pp.
69
75
.
15.
Jiao
,
Y.
, and
Djurdjanovic
,
D.
,
2010
, “
Joint Allocation of Measurement Points and Controllable Tooling Machines in Multistage Manufacturing Processes
,”
IIE Trans.
,
42
(
10
), pp.
703
720
.
16.
Wen
,
Y.
,
Yue
,
X.
,
Hunt
,
J. H.
, and
Shi
,
J.
,
2019
, “
Virtual Assembly and Residual Stress Analysis for Composite Fuselage Assembly Process
,”
J. Manuf. Syst.
,
52
, pp.
55
62
.
17.
Natarajan
,
B. K.
,
1995
, “
Sparse Approximate Solutions to Linear Systems
,”
SIAM J. Comput.
,
24
(
2
), pp.
227
234
.
18.
Amaldi
,
E.
, and
Kann
,
V.
,
1998
, “
On The Approximability of Minimizing Nonzero Variables or Unsatisfied Relations in Linear Systems
,”
Theor. Comput. Sci.
,
209
(
1–2
), pp.
237
260
.
19.
Donoho
,
D. L.
,
2006
, “
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1-Norm Solution is Also the Sparsest Solution
,”
Commun. Pure Appl. Math.
,
59
(
6
), pp.
797
829
.
20.
Dowling
,
N. E.
,
2012
,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue
,
Prentice Hall
,
Upper Saddle River, NJ
.
21.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2001
,
The Elements of Statistical Learning
,
Springer Science&Business Media
,
New York
.
22.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
New York
.
23.
Boyd
,
S.
,
Parikh
,
N.
,
Chu
,
E.
,
Peleato
,
B.
, and
Eckstein
,
J.
,
2011
, “
Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
,”
Found. Trends Mach Learn.
,
3
(
1
), pp.
1
122
.
24.
Demmel
,
J. W.
,
1997
,
Applied Numerical Linear Algebra
(Vol.
56
),
SIAM
,
Philadelphia, PA
.
25.
Morris
,
M. D.
, and
Mitchell
,
T. J.
,
1995
, “
Exploratory Designs for Computational Experiments
,”
J. Stat. Plann. Inference
,
43
(
3
), pp.
381
402
.
26.
Parikh
,
N.
, and
Boyd
,
S.
,
2014
, “
Proximal Algorithms
,”
Found Trends Optim.
,
1
(
3
), pp.
127
239
.
You do not currently have access to this content.