The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning.

References

References
1.
Bauereiß
,
A.
,
Scharowsky
,
T.
, and
Körner
,
C.
,
2014
, “
Defect Generation and Propagation Mechanism During Additive Manufacturing by Selective Beam Melting
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2522
2528
.
2.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Starr
,
T.
, and
Stucker
,
B.
,
2014
, “
Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes
,”
Add. Manuf.
,
1
(
2014
), pp.
87
98
.
3.
Wang
,
Y.
,
Kamath
,
C.
,
Voisin
,
T.
, and
Li
,
Z.
,
2018
, “
A Processing Diagram for High-Density Ti-6Al-4V by Selective Laser Melting
,”
Rapid Prototyping J.
,
24
(
9
), pp.
1469
1478
.
4.
Khairallah
,
S. A.
, and
Anderson
,
A.
,
2014
, “
Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2627
2636
.
5.
Yadroitsev
,
I.
,
Gusarov
,
A.
,
Yadroitsava
,
I.
, and
Smurov
,
I.
,
2010
, “
Single Track Formation in Selective Laser Melting of Metal Powders
,”
J. Mater. Process. Technol.
,
210
(
12
), pp.
1624
1631
.
6.
Xia
,
M.
,
Gu
,
D.
,
Yu
,
G.
,
Dai
,
D.
,
Chen
,
H.
, and
Shi
,
Q.
,
2016
, “
Influence of Hatch Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability During Additive Manufacturing of Inconel 718 Alloy
,”
Int. J. Mach. Tools Manuf.
,
109
(
2016
), pp.
147
157
.
7.
Lee
,
Y.
, and
Zhang
,
W.
,
2016
, “
Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder bed Fusion
,”
Add. Manuf.
,
12
(
2016
), pp.
178
188
.
8.
Wu
,
Y.-C.
,
San
,
C.-H.
,
Chang
,
C.-H.
,
Lin
,
H.-J.
,
Marwan
,
R.
,
Baba
,
S.
, and
Hwang
,
W.-S.
,
2018
, “
Numerical Modeling of Melt-Pool Behavior in Selective Laser Melting with Random Powder Distribution and Experimental Validation
,”
J. Mater. Process. Technol.
,
254
(
2018
), pp.
72
78
.
9.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Materialia
,
108
(
2016
), pp.
36
45
.
10.
Tan
,
J.
,
Tang
,
C.
, and
Wong
,
C.
,
2018
, “
A Computational Study on Porosity Evolution in Parts Produced by Selective Laser Melting
,”
Metall. Mater. Trans. A
,
49A
(
8
), pp.
3663
3673
.
11.
Leitz
,
K.-H.
,
Singer
,
P.
,
Plankensteiner
,
A.
,
Tabernig
,
B.
,
Kestler
,
H.
, and
Sigl
,
L. J. M. P. R.
,
2017
, “
Multi-Physical Simulation of Selective Laser Melting
,”
Metal Powder Report
,
72
(
5
), pp.
331
338
.
12.
Zhao
,
C.
,
Fezzaa
,
K.
,
Cunningham
,
R. W.
,
Wen
,
H.
,
Carlo
,
F.
,
Chen
,
L.
,
Rollett
,
A. D.
, and
Sun
,
T.
,
2017
, “
Real-time Monitoring of Laser Powder Bed Fusion Process Using High-Speed X-ray Imaging and Diffraction
,”
Sci. Rep.
,
7
(
1
), p.
3602
.
13.
Parab
,
N. D.
,
Zhao
,
C.
,
Cunningham
,
R.
,
Escano
,
L. I.
,
Fezzaa
,
K.
,
Everhart
,
W.
,
Rollett
,
A. D.
,
Chen
,
L.
, and
Sun
,
T.
,
2018
, “
Ultrafast X-ray Imaging of Laser–Metal Additive Manufacturing Processes
,”
J. Synchrotron Radiat.
,
25
(
5
), pp.
1467
1477
.
14.
Cunningham
,
R.
,
Zhao
,
C.
,
Parab
,
N.
,
Kantzos
,
C.
,
Pauza
,
J.
,
Fezzaa
,
K.
,
Sun
,
T.
, and
Rollett
,
A. D.
,
2019
, “
Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-Ray Imaging
,”
Science
,
363
(
6429
), pp.
849
852
.
15.
Shrestha
,
S.
,
Starr
,
T.
, and
Chou
,
K.
,
2019
, “
A Study of Keyhole Porosity in Selective Laser Melting: Single Track Scanning With Micro-CT Analysis
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), pp.
1
23
.
16.
Ye
,
J.
,
Rubenchik
,
A. M.
,
Crumb
,
M. F.
,
Guss
,
G.
, and
Matthews
,
M. J.
,
2018
, “
Laser Absorption and Scaling Behavior in Powder Bed Fusion Additive Manufacturing of Metals
,”
Proceedings of the CLEO: Science and Innovations, Optical Society of America
,
San Jose, CA
,
May 13–18
, Optical Society of America, p. JW2A.117.
17.
Mishra
,
B.
, and
Rajamani
,
R. K.
,
1992
, “
The Discrete Element Method for the Simulation of Ball Mills
,”
Appl. Math. Modell.
,
16
(
11
), pp.
598
604
.
18.
Yan
,
W.
,
Qian
,
Y.
,
Ge
,
W.
,
Lin
,
S.
,
Liu
,
W. K.
,
Lin
,
F.
, and
Wagner
,
G. J.
,
2018
, “
Meso-Scale Modeling of Multiple-Layer Fabrication Process in Selective Electron Beam Melting: Inter-Layer/Track Voids Formation
,”
Materials and Design
,
141
(
2018
), pp.
210
219
.
19.
Kloss
,
C.
,
Goniva
,
C.
,
Hager
,
A.
,
Amberger
,
S.
, and
Pirker
,
S.
,
2012
, “
Models, Algorithms and Validation for Opensource DEM and CFD–DEM
,”
Prog. Comput. Fluid Dynam. Int. J.
,
12
(
2–3
), pp.
140
152
.
20.
Escano
,
L. I.
,
Parab
,
N. D.
,
Xiong
,
L.
,
Guo
,
Q.
,
Zhao
,
C.
,
Fezzaa
,
K.
,
Everhart
,
W.
,
Sun
,
T.
, and
Chen
,
L.
,
2018
, “
Revealing Particle-Scale Powder Spreading Dynamics in Powder-Bed-Based Additive Manufacturing Process by High-Speed X-Ray Imaging
,”
Sci. Rep.
,
8
(
1
), p.
15079
.
21.
Gong
,
H.
,
Gu
,
H.
,
Zeng
,
K.
,
Dilip
,
J.
,
Pal
,
D.
,
Stucker
,
B.
,
Christiansen
,
D.
,
Beuth
,
J.
, and
Lewandowski
,
J. J.
,
2014
, “
Melt Pool Characterization for Selective Laser Melting of Ti-6Al-4V Pre-Alloyed Powder
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
, pp.
256
267
.
22.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
,
Cambridge, UK
.
23.
Shrestha
,
S.
, and
Chou
,
K.
,
2017
, “
A Build Surface Study of Powder-Bed Electron Beam Additive Manufacturing by 3D Thermo-Fluid Simulation and White-Light Interferometry
,”
Int. J. Mach. Tools Manuf.
,
121
(
2017
), pp.
37
49
.
24.
Cho
,
J.-H.
, and
Na
,
S.-J.
,
2006
, “
Implementation of Real-Time Multiple Reflection and Fresnel Absorption of Laser Beam in Keyhole
,”
J. Phys. D: Appl. Phys.
,
39
(
24
), p.
5372
.
25.
Dilip
,
J.
,
Zhang
,
S.
,
Teng
,
C.
,
Zeng
,
K.
,
Robinson
,
C.
,
Pal
,
D.
, and
Stucker
,
B.
,
2017
, “
Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting
,”
Prog. Add. Manuf.
,
2
(
3
), pp.
157
167
.
26.
Bertoli
,
U. S.
,
Wolfer
,
A. J.
,
Matthews
,
M. J.
,
Delplanque
,
J.-P. R.
, and
Schoenung
,
J. M.
,
2017
, “
On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting
,”
Mater. Des.
,
113
(
2017
), pp.
331
340
.
27.
Kroos
,
J.
,
Gratzke
,
U.
, and
Simon
,
G.
,
1993
, “
Towards a Self-Consistent Model of the Keyhole in Penetration Laser Beam Welding
,”
J. Phys. D: Appl. Phys.
,
26
(
3
), p.
474
.
28.
Martin
,
A.
,
Calta
,
N.
,
Hammons
,
J.
,
Khairallah
,
S.
,
Nielsen
,
M.
,
Shuttlesworth
,
R.
,
Sinclair
,
N.
,
Matthews
,
M.
,
Jeffries
,
J.
, and
Willey
,
T.
,
2019
, “
Ultrafast Dynamics of Laser-Metal Interactions in Additive Manufacturing Alloys Captured by In Situ X-Ray Imaging
,”
Mater. Today Adv.
,
1
(
2019
), p.
100002
.
29.
Shrestha
,
S.
,
Starr
,
T.
, and
Chou
,
K.
,
2018
, “
Individual and coupled contributions of laser power and scanning speed towards process-induced porosity in selective laser melting
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 13–15
, pp.
1400
1409
.
30.
Hann
,
D.
,
Iammi
,
J.
, and
Folkes
,
J.
,
2011
, “
A Simple Methodology for Predicting Laser-Weld Properties From Material and Laser Parameters
,”
J. Phys. D: Appl. Phys.
,
44
(
44
), p.
445401
.
31.
Trapp
,
J.
,
Rubenchik
,
A. M.
,
Guss
,
G.
, and
Matthews
,
M. J.
,
2017
, “
In Situ Absorptivity Measurements of Metallic Powders During Laser Powder-bed Fusion Additive Manufacturing
,”
Appl. Mat. Today
,
9
(
2017
), pp.
341
349
.
You do not currently have access to this content.