Zinc-coated advanced high strength steels (AHSS) used in automotive applications are susceptible to liquid metal embrittlement (LME) during resistance spot welding (RSW). This study examines the impact of multiple pulse welding schedules on LME severity in welds of TRIP1100. Two different types of pulsing methodologies have been proposed to reduce LME severity: applying a pre-pulse before the welding current to remove the zinc coating and pulsing during the welding current to manage heat generation. However, the mechanisms by which these methods affect LME severity have not been fully explored. This work showed that a welding schedule consisting of two equal length pulses resulted in the least severe LME because it reduced the amount of free zinc available for LME without creating too much tensile stress. The majority of pre-pulse welding schedules caused an increase in LME cracking due to the additional heat introduced into the weld. However, a 4 kA (low current) pre-pulse applied for 3 cy (low time) reduced LME cracking by almost 30%. The pre-pulse allowed zinc to diffuse into the coating and stabilize the zinc, without introducing too much additional heat into the weld. These results indicate that multiple pulse welding schedules may be successfully used to reduce LME cracking, although the mechanisms by which they impact LME are more complicated than previously thought.

References

References
1.
Cooper
,
A. I.
,
2015
, “
Materials Chemistry: Cooperative Carbon Capture
,”
Nature
,
519
(
7543
), pp.
294
295
.
2.
McNutt
,
M.
,
2013
, “
Climate Change Impacts
,”
Science
,
341
(
6145
), p.
435
.
3.
Jakob
,
M.
, and
Hilaire
,
J.
,
2015
, “
Unburnable Fossil-Fuel Reserves
,”
Nature
,
517
(
7533
), pp.
150
152
.
4.
Creutzig
,
B. F.
,
Jochem
,
P.
,
Edelenbosch
,
O. Y.
,
Vuuren
,
D. P.
,
Van Mccollum
,
D.
, and
Minx
,
J.
,
2015
, “
Transport: A Roadblock to Climate Change Mitigation?
,”
Science
,
350
(
6263
), pp.
911
912
.
5.
Parkes
,
D.
,
Xu
,
W.
,
Westerbaan
,
D.
,
Nayak
,
S. S.
,
Zhou
,
Y.
,
Goodwin
,
F.
,
Bhole
,
S.
, and
Chen
,
D. L.
,
2013
, “
Microstructure and Fatigue Properties of Fiber Laser Welded Dissimilar Joints Between High Strength Low Alloy and Dual-Phase Steels
,”
Mater. Des.
,
51
(
1
), pp.
665
675
.
6.
Parkes
,
D.
,
Westerbaan
,
D.
,
Nayak
,
S. S.
,
Zhou
,
Y.
,
Goodwin
,
F.
,
Bhole
,
S.
, and
Chen
,
D. L.
,
2014
, “
Tensile Properties of Fiber Laser Welded Joints of High Strength Low Alloy and Dual-Phase Steels at Warm and Low Temperatures
,”
Mater. Des.
,
56
(
1
), pp.
193
199
.
7.
Zhang
,
H.
, and
Senkara
,
J.
,
2006
, “
Electrothermal Processes of Welding
,”
Resistance Welding: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
, pp.
19
57
.
8.
Ashiri
,
R.
,
Haque
,
M. A.
,
Ji
,
C.-W.
,
Shamanian
,
M.
,
Salimijazi
,
H. R.
, and
Park
,
Y.-D.
,
2015
, “
Supercritical Area and Critical Nugget Diameter for Liquid Metal Embrittlement of Zn-Coated Twining Induced Plasticity Steels
,”
Scr. Mater.
,
109
(
1
), pp.
6
10
.
9.
Kim
,
Y. G.
,
Kim
,
I. J.
,
Kim
,
J. S.
,
Chung
,
Y. I.
, and
Choi
,
D. Y.
,
2014
, “
Evaluation of Surface Crack in Resistance Spot Welds of Zn-Coated Steel
,”
Japan Inst. Met. Mater.
,
55
(
1
), pp.
171
175
.
10.
Choi
,
D. Y.
,
Sharma
,
A.
,
Uhm
,
S. H.
, and
Jung
,
J. P.
,
2018
, “
Liquid Metal Embrittlement of Resistance Spot Welded 1180 TRIP Steel: Effect of Electrode Force on Cracking Behavior
,”
Met. Mater. Int.
,
25
(1)
, pp.
219
228
.
11.
Barthelmie
,
J.
,
Schram
,
A.
, and
Wesling
,
V.
,
2016
, “
Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-Refined TWIP Steels
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
118
, p.
12002
.
12.
Tolf
,
E.
,
Hedegård
,
J.
, and
Melander
,
A.
,
2013
, “
Surface Breaking Cracks in Resistance Spot Welds of Dual Phase Steels with Electrogalvanised and Hot Dip Zinc Coating
,”
Sci. Technol. Weld. Join.
,
18
(
1
), pp.
25
31
.
13.
Beal
,
C.
,
Kleber
,
X.
,
Fabregue
,
D.
, and
Bouzekri
,
M.
,
2012
, “
Embrittlement of a Zinc Coated High Manganese TWIP Steel
,”
Mater. Sci. Eng. A
,
543
, pp.
76
83
.
14.
DiGiovanni
,
C.
,
Biro
,
E.
, and
Zhou
,
N.
,
2018
, “
Impact of Liquid Metal Embrittlement Cracks on Resistance Spot Weld Static Strength
,”
Sci. Technol. Weld. Join.
,
24
(
3
), pp.
218
224
.
15.
DiGiovanni
,
C.
,
Han
,
X.
,
Powell
,
A.
,
Biro
,
E.
, and
Zhou
,
N. Y.
,
2019
, “
Experimental and Numerical Analysis of Liquid Metal Embrittlement Crack Location
,”
J. Mater. Eng. Perform.
, 28
(4)
, pp.
2045
2052
.
16.
Wintjes
,
E.
,
DiGiovanni
,
C.
,
He
,
L.
,
Biro
,
E.
, and
Zhou
,
Y.
,
2019
, “
Quantifying the Link Between Crack Distribution and Resistance Spot Weld Strength Reduction in Liquid Metal Embrittlement Susceptible Steels
,”
Weld. World
,
63
(
3
), pp.
807
814
.
17.
Choi
,
D.-Y.
,
Uhm
,
S.-H.
,
Enloe
,
C. M.
,
Lee
,
H.
,
Kim
,
G.
, and
Horvath
,
C.
,
2017
, “
Liquid Metal Embrittlement of Resistance Spot Welded 1180TRIP Steel- Effects of Crack Geometry on Weld Mechanical Performance
,”
Mater. Sci. Technol.
, pp.
454
462
.
18.
Choi
,
D.-Y.
,
Sharma
,
A.
, and
Jung
,
J. P.
,
2018
, “
“Parametric Study for Liquid Metal Embrittlement in Resistance Spot Welds of Galvanized TRIP Steel
,”
Sheet Metallics Welding Conference XVIII
,
Livonia, MI
,
Oct. 17–18
, pp.
1
9
.
19.
Sigler
,
D. R.
,
Schroth
,
J. G.
,
Yang
,
W.
,
Gayden
,
X. Q.
,
Jiang
,
C.
,
Sang
,
Y.
, and
Morin
,
P. J.
,
2008
, “
“Observations of Liquid Metal-Assisted Cracking in Resistance Spot Welds of Zinc-Coated Advanced High-Strength Steels
,”
Proceedings of the Sheet Metallic Welding Conference XIII
,
Livonia, MI
,
May 13–16
, pp.
1
17
.
20.
Ashiri
,
R.
,
Shamanian
,
M.
,
Salimijazi
,
H. R.
,
Haque
,
M. A.
,
Bae
,
J. H.
,
Ji
,
C. W.
,
Chin
,
K. G.
, and
Park
,
Y. D.
,
2016
, “
Liquid Metal Embrittlement-Free Welds of Zn-Coated Twinning Induced Plasticity Steels
,”
Scr. Mater.
,
114
(
1
), pp.
41
47
.
21.
Pouranvari
,
M.
, and
Marashi
,
S. P. H.
,
2013
, “
Critical Review of Automotive Steels Spot Welding: Process, Structure and Properties
,”
Sci. Technol. Weld. Join.
,
18
(
5
), pp.
361
403
.
22.
Williams
,
N. T.
, and
Parker
,
J. D.
,
2004
, “
Review of Resistance Spot Welding of Steel Sheets—Part 1 Modelling and Control of Weld Nugget Formation
,”
Int. Mater. Rev.
,
49
(
2
), pp.
45
75
.
23.
Luo
,
Y.
,
Liu
,
J.
,
Xu
,
H.
,
Xiong
,
C.
, and
Liu
,
L.
,
2009
, “
Regression Modeling and Process Analysis of Resistance Spot Welding on Galvanized Steel Sheet
,”
Mater. Des.
,
30
(
7
), pp.
2547
2555
.
24.
Beal
,
C.
,
2012
, “
Mechanical Behaviour of a New Automotive High Manganese TWIP Steel in the Presence of Liquid Zinc
,” thesis,
INSA Lyon
.
25.
Benlatreche
,
Y.
,
Ghassemi-Armaki
,
H.
,
Duchet
,
M.
,
Dupuy
,
T.
,
Cornette
,
D.
,
Carollo
,
G.
, and
Dietsch
,
P.
,
2017
, “
Spot-Weld Integrity of Zn-Coated 3rd Gen. Advanced High Strength Steels in Presence of LME
,”
International Automotive Body Congress
,
Detroit, MI
,
Sept. 20–21
.
26.
American Welding Society
,
2012
, “
American Welding Society: Test Method for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials (AWS D 8.9M)
,” pp.
1
107
.
27.
Taylor
,
J. R.
,
1997
,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
,
University Science Books
,
Sausalito, CA
.
28.
Efron
,
B.
,
1979
, “
Bootstrap Methods: Another Look at the Jackknife
,”
Ann. Stat.
,
7
(
1
), pp.
1
26
.
29.
Hamedi
,
M.
, and
Atashparva
,
M.
,
2017
, “
A Review of Electrical Contact Resistance Modeling in Resistance Spot Welding
,”
Weld. World
,
61
(
2
), pp.
269
290
.
30.
Greitmann
,
M. J.
, and
Rother
,
K.
,
1998
, “
Numerical Simulation of the Resistance Spot Welding Process Using Spotwelder
,”
Mathematical Modelling of Weld Phenomena 4
,
H.
Cerjak
, and
H. K. D. H.
Bhadeshia
, eds.,
Institute of Materials
,
Graz, Austria
, pp.
531
544
.
31.
DiGiovanni
,
C.
,
Bag
,
S.
,
Mehling
,
C.
,
Choi
,
K. W.
,
Macwan
,
A.
,
Biro
,
E.
, and
Zhou
,
N. Y.
,
2019
, “
Reduction of Liquid Metal Embrittlement Using Weld Current Ramping
,”
IIW Comm. III Intermed. Meeting, III-1908-1
,
Warren, MI
,
Mar. 6–7
.
32.
Bhattacharya
,
D.
,
2018
, “
Liquid Metal Embrittlement During Resistance Spot Welding of Zn-Coated High-Strength Steels
,”
Mater. Sci. Technol.
,
34
(
15
), pp.
1809
1829
.
33.
Marder
,
A. R.
,
2000
, “
The Metallurgy of Zinc-Coated Steel
,”
Prog. Mater. Sci.
,
45
(
3
), pp.
191
271
.
34.
Beal
,
C.
,
Kleber
,
X.
,
Fabregue
,
D.
, and
Bouzekri
,
M.
,
2012
, “
Liquid Zinc Embrittlement of Twinning-Induced Plasticity Steel
,”
Scr. Mater.
,
66
(
12
), pp.
1030
1033
.
35.
Dickinson
,
D. W.
,
Franklin
,
J. E.
, and
Stanya
,
A.
,
1980
, “
Characterization of Spot Welding Behavior by Dynamic Electrical Parameter Monitoring
,”
Weld. J.
, pp.
170
176
.
36.
Kim
,
Y. G.
,
Kim
,
I. J.
,
Kim
,
J. S.
,
Chung
,
Y. I.
, and
Choi
,
D. Y.
,
2014
, “
Evaluation of Surface Crack in Resistance Spot Welds of Zn-Coated Steel
,”
Mater. Trans.
,
55
(
1
), pp.
171
175
.
You do not currently have access to this content.