Constitutive model is the most commonly used method to describe the material deformation behavior during machining process. This paper aims to investigate the material dynamic deformation during high speed machining of 7050-T7451 aluminum alloy with the aid of split Hopkinson pressure bar (SHPB) system and finite element (FE) analysis. First, the quasi static and dynamic compression behaviors of 7050-T7451 aluminum alloy are tested at different loading conditions with a wide range of strain rates (0.001 s, 4000 s, 6000 s, 8000 s, and 12,000 s) and temperatures (room temperature, 100 °C, 200 °C, 300 °C, and 400 °C). The influences of temperature on strain and strain rate hardening effects are revealed based on the flow stress behavior and microstructural alteration of tested specimens. Second, a modified Johnson–Cook (JCM) constitutive model is proposed considering the influence of temperature on strain and strain rate hardening. The prediction accuracies of Johnson–Cook (JC) and JCM constitutive models are compared, which indicates that the predicted flow stresses of JCM model agree better with the experimental results. Then the established JC and JCM models are embedded into FE analysis of orthogonal cutting for 7050-T7451 aluminum alloy. The reliabilities of two material models are evaluated with chip morphology and cutting force as assessment criteria. Finally, the material dynamic deformation behavior during high speed machining and compression test is compared. The research results can help to reveal the dynamic properties of 7050-T7451 aluminum alloy and provide mechanical foundation for FE analysis of high speed machining.

References

References
1.
Tabei
,
A.
,
Shih
,
D. S.
,
Garmestani
,
H.
, and
Liang
,
S. Y.
,
2016
, “
Dynamic Recrystallization of Al Alloy 7075 in Turning
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
071010
.
2.
Driemeier
,
L.
,
Brünig
,
M.
,
Micheli
,
G.
, and
Alves
,
M.
,
2010
, “
Experiments on Stress-Triaxiality Dependence of Material Behavior of Aluminum Alloys
,”
Mech. Mater.
,
42
, pp.
207
217
.
3.
Teimouri
,
R.
,
Amini
,
S.
, and
Mohagheghian
,
N.
,
2017
, “
Experimental Study and Empirical Analysis on Effect of Ultrasonic Vibration During Rotary Turning of Aluminum 7075 Aerospace Alloy
,”
J. Manuf. Process.
,
26
, pp.
1
12
.
4.
Najiha
,
M. S.
,
Rahman
,
M. M.
, and
Yusoff
,
A. R.
,
2015
, “
Flank Wear Characterization in Aluminum Alloy (6061 T6) With Nanofluid Minimum Quantity Lubrication Environment Using an Uncoated Carbide Tool
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061004
.
5.
Wang
,
B.
, and
Liu
,
Z. Q.
,
2017
, “
Acoustic Emission Signal Analysis During Chip Formation Process in High Speed Machining of 7050-T7451 Aluminum Alloy and Inconel 718 Superalloy
,”
J. Manuf. Process.
,
27
, pp.
114
125
.
6.
Noh
,
H. G.
,
An
,
W. J.
,
Park
,
H. G.
,
Kang
,
B. S.
, and
Kim
,
J.
,
2017
, “
Verification of Dynamic Flow Stress Obtained Using Split Hopkinson Pressure Test Bar With High-Speed Forming Process
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
629
640
.
7.
Jomaa
,
W.
,
Mechri
,
O.
,
Lévesque
,
J.
,
Songmene
,
V.
,
Bocher
,
P.
, and
Gakwaya
,
A.
,
2017
, “
Finite Element Simulation and Analysis of Serrated Chip Formation During High-Speed Machining of AA7075-T651 Alloy
,”
J. Manuf. Process.
,
26
, pp.
446
458
.
8.
Wang
,
B.
, and
Liu
,
Z. Q.
,
2016
, “
Investigations on Deformation and Fracture Behavior of Workpiece Material During High Speed Machining of 7050-T7451 Aluminum Alloy
,”
CIRP J. Manuf. Sci. Technol.
,
14
, pp.
43
54
.
9.
Sreeramulu
,
D.
,
Rao
,
C. J.
,
Sagar
,
Y.
, and
Venkatesh
,
M.
,
2018
, “
Finite Element Modeling and Machining of Al 7075 Using Coated Cutting Tools
,”
Mater. Today: Proc.
,
5
(
2
), pp.
8364
8873
.
10.
Johnson, G. R.
, and
Cook, W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,” 7th International Symposium on Ballistics, Hague, The Netherlands, Apr. 19–21, pp.
541
547
.
11.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
48
, pp.
275
288
.
12.
Khan
,
A. S.
, and
Yu
,
S.
,
2012
, “
Deformation Induced Anisotropic Responses of Ti-6Al-4V Alloy—Part I: Experiments
,”
Int. J. Plast.
,
38
, pp.
1
13
.
13.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1987
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
,
61
, pp.
1816
1825
.
14.
Banerjee
,
B.
,
2007
, “
The Mechanical Threshold Stress Model for Various Tempers of AISI 4340 Steel
,”
Int. J. Solids Struct.
,
44
(
3–4
), pp.
834
859
.
15.
Rokni
,
M. R.
,
Zarei-Hanzaki
,
A.
,
Roostaei
,
A. A.
, and
Abolhasani
,
A.
,
2011
, “
Constitutive Base Analysis of a 7075 Aluminum Alloy During Hot Compression Testing
,”
Mater. Des.
,
32
(
10
), pp.
4955
4960
.
16.
Zhang
,
D. N.
,
Shangguan
,
Q. Q.
,
Xie
,
C. J.
, and
Liu
,
F.
,
2015
, “
A Modified Johnson-Cook Model of Dynamic Tensile Behaviors for 7075-T6 Aluminum Alloy
,”
J. Alloy. Compd.
,
619
, pp.
186
194
.
17.
Haghdadi
,
N.
,
Zarei-Hanzaki
,
A.
, and
Abedi
,
H. R.
,
2012
, “
The Flow Behavior Modeling of Cast A356 Aluminum Alloy at Elevated Temperatures Considering the Effect of Strain
,”
Mater. Sci. Eng. A
,
535
, pp.
252
257
.
18.
Li
,
J.
,
Li
,
F. G.
,
Cai
,
J.
,
Wang
,
R. T.
,
Yuan
,
Z. W.
, and
Xue
,
F. M.
,
2012
, “
Flow Behavior Modeling of the 7050 Aluminum Alloy at Elevated Temperatures Considering the Compensation of Strain
,”
Mater. Des.
,
42
, pp.
369
377
.
19.
Paturi
,
U. M. R.
,
Narala
,
S. K. R.
, and
Pundir
,
R. S.
,
2014
, “
Constitutive Flow Stress Formulation, Model Validation and FE Cutting Simulation for AA7075-T6 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
605
, pp.
176
185
.
20.
Fu
,
X.
,
Wang
,
H.
,
Wan
,
Y.
, and
Wang
,
X.
,
2010
, “
Material Constitutive Model in Machining 7050-T7451 by Orthogonal Machining Experiments
,”
Adv. Mater. Res.
,
97–101
, pp.
713
716
.
21.
Fu
,
X.
,
Ai
,
X.
,
Zhang
,
S.
, and
Wan
,
Y.
,
2006
, “
Constitutive Equation for 7050 Aluminum Alloy at High Temperatures
,”
Mater. Sci. Forum
,
532–533
, pp.
125
128
.
22.
Fu
,
X.
,
Ai
,
X.
,
Wan
,
Y.
, and
Zhang
,
S.
,
2007
, “
Flow Stress Modeling for Aeronautical Aluminum Alloy 7050-T7451 in High-Speed Cutting
,”
Trans. Nanjing Univ. Aeronaut. Astronaut.
,
24
(
2
), pp.
139
144
.
23.
Zhan
,
L. H.
,
Lin
,
J. G.
,
Dean
,
T. A.
, and
Huang
,
M. H.
,
2011
, “
Experimental Studies and Constitutive Modelling of the Hardening of Aluminium Alloy 7055 Under Creep Age Forming Conditions
,”
Int. J. Mech. Sci.
,
53
(
8
), pp.
595
605
.
24.
Lee
,
W. S.
,
Sue
,
W. C.
,
Lin
,
C. F.
, and
Wu
,
C. J.
,
2000
, “
The Strain Rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy
,”
J. Mater. Process. Technol.
,
100
(
1–3
), pp.
116
122
.
25.
Clausen
,
A. H.
,
Børvik
,
T.
,
Hopperstad
,
O. S.
, and
Benallal
,
A.
,
2004
, “
Flow and Fracture Characteristics of Aluminium Alloy AA5083-H116 as Function of Strain Rate, Temperature and Triaxiality
,”
Mater. Sci. Eng. A
,
364
(
1–2
), pp.
260
272
.
26.
Chen
,
G.
,
Ren
,
C. Z.
,
Ke
,
Z. H.
,
Li
,
J.
, and
Yang
,
X. P.
,
2016
, “
Modeling of Flow Behavior for 7050-T7451 Aluminum Alloy Considering Microstructural Evolution Over a Wide Range of Strain Rates
,”
Mech. Mater.
,
95
, pp.
146
157
.
27.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2017
, “
On the Importance of the Choice of the Parameters of the Johnson-Cook Constitutive Model and Their Influence on the Results of a Ti6Al4V Orthogonal Cutting Model
,”
Int. J. Mech. Sci.
,
122
, pp.
143
155
.
28.
Wang
,
B.
, and
Liu
,
Z. Q.
,
2014
, “
Investigations on the Chip Formation Mechanism and Shear Localization Sensitivity of High-Speed Machining Ti6Al4V
,”
Int. J. Adv. Manuf. Technol.
,
75
(
5–8
), pp.
1065
1076
.
29.
Wang
,
B.
, and
Liu
,
Z. Q.
,
2015
, “
Shear Localization Sensitivity Analysis for Johnson-Cook Constitutive Parameters on Serrated Chips in High Speed Machining of Ti6Al4V
,”
Simul. Model. Pract. Theory
,
55
, pp.
63
76
.
30.
Kortabarria
,
A.
,
Armentia
,
I.
, and
Arrazola
,
P.
,
2016
, “
Sensitivity Analysis of Material Input Data Influence on Machining Induced Residual Stress Prediction in Inconel 718
,”
Simul. Model. Pract. Theory
,
63
, pp.
47
57
.
31.
Li
,
Y.
,
Guo
,
Y.
,
Hu
,
H.
, and
Wei
,
Q.
,
2009
, “
A Critical Assessment of High-Temperature Dynamic Mechanical Testing of Metals
,”
Int. J. Impact Eng.
,
36
(
2
), pp.
177
184
.
32.
Tabei
,
A.
,
Abed
,
F. H.
,
Voyiadjis
,
G. Z.
, and
Garmestani
,
H.
,
2017
, “
Constitutive Modeling of Ti-6Al-4V at a Wide Range of Temperatures and Strain Rates
,”
Eur. J. Mech. A-Solid
,
63
, pp.
128
135
.
33.
Iturbe
,
A.
,
Giraud
,
E.
,
Hormaetxe
,
E.
,
Garay
,
A.
,
Germain
,
G.
,
Ostolaza
,
K.
, and
Arrazola
,
P. J.
,
2017
, “
Mechanical Characterization and Modelling of Inconel 718 Material Behavior for Machining Process Assessment
,”
Mater. Sci. Eng. A
,
682
, pp.
441
453
.
34.
Kurzydłowski
,
K. J.
,
Garbacz
,
H.
, and
Richert
,
M.
,
2004
, “
Effect of Severe Plastic Deformation on the Microstructure and Mechanical Properties of Al and Cu
,”
Rev. Adv. Mater. Sci.
,
8
(
2
), pp.
129
133
.http://www.ipme.ru/e-journals/RAMS/no_2804/garbacz.pdf
35.
Liebig
,
J. P.
,
Krauß
,
S.
,
Göken
,
M.
, and
Merle
,
B.
,
2018
, “
Influence of Stacking Fault Energy and Dislocation Character on Slip Transfer at Coherent Twin Boundaries Studied by Micropillar Compression
,”
Acta Mater.
,
154
, pp.
261
272
.
36.
Ji
,
G.
,
Li
,
Q.
, and
Li
,
L.
,
2014
, “
A Physical-Based Constitutive Relation to Predict Flow Stress for Cu-0.4 Mg Alloy During Hot Working
,”
Mater. Sci. Eng. A
,
615
, pp.
247
254
.
37.
Wu
,
B.
,
Li
,
M. Q.
, and
Ma
,
D. W.
,
2012
, “
The Flow Behavior and Constitutive Equations in Isothermal Compression of 7050 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
542
, pp.
79
87
.
38.
Xu
,
Z.
, and
Huang
,
F.
,
2013
, “
Thermomechanical Behavior and Constitutive Modeling of Tungsten-Based Composite Over Wide Temperature and Strain Rate Ranges
,”
Int. J. Plast.
,
40
, pp.
163
184
.
39.
Wang
,
B.
,
Liu
,
Z. Q.
,
Su
,
G. S.
,
Song
,
Q. H.
, and
Ai
,
X.
,
2015
, “
Investigations of Critical Cutting Speed and Ductile-to-Brittle Transition Mechanism for Workpiece Material in Ultra-High Speed Machining
,”
Int. J. Mech. Sci.
,
104
, pp.
44
59
.
40.
Vural
,
M.
, and
Caro
,
J.
,
2009
, “
Experimental Analysis and Constitutive Modeling for the Newly Developed 2139-T8 Alloy
,”
Mater. Sci. Eng. A
,
520
(
1–2
), pp.
56
65
.
41.
Jaspers
,
S. P. F. C.
, and
Dautzenberg
,
J. H.
,
2002
, “
Material Behaviour in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone,” J. Mater
,”
Process. Technol.
,
122
(
2–3
), pp.
322
330
.
42.
Wang
,
B.
,
Liu
,
Z. Q.
,
Su
,
G. S.
, and
Ai
,
X.
,
2015
, “
Brittle Removal Mechanism of Ductile Materials With Ultrahigh-Speed Machining
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061002
.
43.
Wang
,
B.
, and
Liu
,
Z. Q.
,
2016
, “
Evaluation on Fracture Locus of Serrated Chip Generation With Stress Triaxiality in High Speed Machining of Ti6Al4V
,”
Mater. Des.
,
98
, pp.
68
78
.
You do not currently have access to this content.