Wire electrical discharge machining (WEDM) is a demanding high-precision process for machining of hard-to-machine materials. The main issue is manufacturing errors in shape and radius of small arcs generation. In this paper, a novel model about spark variable gap sizes and nonuniform spark distribution around the wire on arced path machining is first theoretically developed using spark angle domain and WEDM dynamic analysis. Applying spark-force distributed around the wire and resulting wire deflection are estimated by the WEDM conditions influenced by plasma channel specifications, discharge frequency, wire guide clearance, wire tension, and arc radius. Total theoretical arced machining errors including wire deflection and spark gap size variation around the wire interface are calculated based on the proposed model. In addition, machining errors of straight and small arced paths are experimentally analyzed under variation of WEDM influential parameters including discharge frequency, arced path radius (150, 300 and 450 μm), and wire tension through the statistical full factorial. Comparison of the results for different sets of variable parameters shows that the theoretical values of the arced machining errors can be consistent with the experimental one by a coefficient which depends on the machining conditions and the WED machine type. Finally, based on the theoretical and experimental results, a theoretical algorithm and an operational method with mean accuracy of 84.8% are proposed for predicting and compensating the errors of WEDM on the arced paths. Findings of this research can be used in high-accurate WEDM applications and industries.

References

References
1.
Tao
,
J.
,
Shih
,
A. J.
, and
Ni
,
J.
,
2008
, “
Experimental Study of the Dry and Near-Dry Electrical Discharge Milling Processes
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011002
.
2.
Joshi
,
K.
,
Bhandarkar
,
U.
,
Samajdar
,
I.
, and
Joshi
,
S.
,
2018
, “
Micro-Structural Characterization of Thermal Damage on Silicon Wafers Sliced Using Wire-EDM
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091001
.
3.
Qu
,
J.
, and
Shih
,
A. J.
,
2002
, “
Development of the Cylindrical Wire Electrical Discharge Machining Process—Part 1: Concept, Design, and Material Removal Rate
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
702
707
.
4.
Yang
,
Z.
,
Wysk
,
R. A.
, and
Joshi
,
S.
,
2012
, “
Setup Planning Automation for Six-Axis Wire Electrical Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021009
.
5.
Qu
,
J.
, and
Shih
,
A. J.
,
2002
, “
Development of the Cylindrical Wire Electrical Discharge Machining Process—Part 2: Surface Integrity and Roundness
,”
ASME J. Manuf. Sci. Eng.
,
124
, pp.
708
714
.
6.
Dekeyser
,
W. L.
, and
Snoeys
,
R.
,
1989
, “
Geometrical Accuracy of Wire-EDM
,”
Ninth International Symposium on Electro Machining (ISEM-9)
, Nagoya, Japan, Apr. 10–14, pp.
226
232
.
7.
Hsue
,
W. J.
,
Liao
,
Y. S.
, and
Lu
,
S. S.
,
1999
, “
A Study of Corner Control Strategy of Wire-EDM Based on Quantitative MRR Analysis
,”
Int. J. Electr. Mach.
,
4
(
1
), pp.
33
39
.
8.
Obara
,
H.
,
Kawai
,
T.
,
Ohsumi
,
T.
, and
Hatano
,
M.
,
2003
, “
Combined Power and Path Control Method to Improve Corner Accuracy of Rough Cuts by Wire EDM (1st Report)
,”
Int. J. Electr. Mach.
,
8
(
1
), pp.
27
32
.
9.
Obara
,
H.
,
Kawai
,
T.
,
Ohsumi
,
T.
, and
Hatano
,
M.
,
2003
, “
Combined Power and Path Control Method to Improve Corner Accuracy of Rough Cuts by Wire EDM (2nd Report)
,”
Int. J. Electr. Mach.
,
8
(
1
), pp.
33
38
.
10.
Sanchez
,
J. A.
,
de Lacalle
,
L. N. L.
, and
Lamikiz
,
A.
,
2004
, “
A Computer Aided System for the Optimization of the Accuracy of the Wire Electro-Discharge Machining Process
,”
Int. J. Comp. Integ. Manuf.
,
17
(
5
), pp.
413
420
.
11.
Mingqi
,
L.
,
Minghui
,
L.
, and
Guangyao
,
X.
,
2005
, “
Study on the Variations of Form and Position of the Wire Electrode in WEDM-HS
,”
Int. J. Adv. Manuf. Technol.
,
25
(
9–10
), pp.
929
934
.
12.
Sanchez
,
J. A.
,
Rodil
,
J. L.
,
Herrero
,
A.
,
de Lacalle
,
L. N. L.
, and
Lamikiz
,
A.
,
2007
, “
On the Influence of Cutting Speed Limitation on the Accuracy of Wire-EDM Corner-Cutting
,”
J. Mater. Process Technol.
,
182
(
1–3
), pp.
574
579
.
13.
Han
,
F.
,
Zhang
,
J.
, and
Soichiro
,
I.
,
2007
, “
Corner Error Simulation of Rough Cutting in Wire EDM
,”
Precis. Eng.
,
31
(
4
), pp.
331
336
.
14.
Han
,
F.
,
Cheng
,
G.
,
Feng
,
Z.
, and
Isago
,
S.
,
2008
, “
Thermo Mechanical Analysis and Optimal Tension Control of Micro Wire Electrode
,”
Int. J. Mach. Tools Manuf.
,
48
(
7–8
), pp.
922
931
.
15.
Dodun
,
O.
,
Gonçalves-Coelho
,
A. M.
,
Slătineanu
,
L.
, and
Nagîţ
,
G.
,
2009
, “
Using Wire Electrical Discharge Machining for Improved Corner Cutting Accuracy of Thin Parts
,”
Int. J. Adv. Manuf. Technol.
,
41
(
1
), pp.
858
865
.
16.
Sarkar
,
S.
,
Sekh
,
M.
,
Mitra
,
S.
, and
Bhattacharyya
,
B.
,
2011
, “
A Novel Method of Determination of Wire Lag for Enhanced Profile Accuracy in WEDM
,”
Precis. Eng.
,
35
(
2
), pp.
339
347
.
17.
Selvakumar
,
G.
,
Sarkar
,
S.
, and
Mitra
,
S.
,
2012
, “
Experimental Investigation on Die Corner Accuracy for Wire Electrical Discharge Machining of Monel 400 Alloy
,”
Proc. Inst. Mech. Eng. B J. Eng. Manuf.
,
226
(
10
), pp.
1694
1704
.
18.
Selvakumar
,
G.
,
Jiju
,
K. B.
,
Sarkar
,
S.
, and
Mitra
,
S.
,
2016
, “
Enhancing Die Corner Accuracy Through Trim Cut in WEDM
,”
Int. J. Adv. Manuf. Technol.
,
83
(
5–8
), pp.
791
803
.
19.
Bhuyan
,
B. K.
, and
Yadava
,
V.
,
2014
, “
Experimental Study of Traveling Wire Electrochemical Spark Machining of Borosilicate Glass
,”
Mater. Manuf. Process.
,
29
(
3
), pp.
298
304
.
20.
Mouralova
,
K.
,
Kovar
,
J.
,
Klakurkova
,
L.
, and
Prokes
,
T.
,
2018
, “
Effect of Width of Kerf on Machining Accuracy and Subsurface Layer After WEDM
,”
J. Mater. Eng. Perform.
,
27
(
4
), pp.
1908
1916
.
21.
Yeh
,
C. C.
,
WU
,
K. L.
,
Lee
,
J. W.
, and
Yan
,
B. H.
,
2014
, “
Processing Characteristics Using Phosphorous Dielectric on Wire Electrical Discharge Machining of Polycrystalline Silicon
,”
Mater. Manuf. Process.
,
29
(
2
), pp.
146
152
.
22.
Abyar
,
H.
,
Parvizian
,
J.
, and
Abdullah
,
A.
,
2015
, “
Improving Accuracy of Curved Corners in Wire EDM Successive Cutting
,”
Int. J. Adv. Manuf. Technol.
,
76
(
1–4
), pp.
447
459
.
23.
Ramamurthy
,
A.
,
Sivaramakrishnan
,
R.
,
Muthuramalingam
,
T.
, and
Venugopal
,
S.
,
2015
, “
Performance Analysis of Wire Electrodes on Machining Ti-6Al-4V Alloy Using Electrical Discharge Machining Process
,”
Mach. Sci. Technol.
,
19
(
4
), pp.
577
592
.
24.
Werner
,
A.
,
2016
, “
Method for Enhanced Accuracy in Machining Curvilinear Profiles on Wire-Cut Electrical Discharge Machines
,”
Precis. Eng.
,
44
, pp.
75
80
.
25.
Pramanik
,
A.
, and
Littlefair
,
G.
,
2016
, “
Wire EDM Mechanism of MMCs With the Variation of Reinforced Particle Size
,”
Mater. Manuf. Process.
,
31
(
13
), pp.
1700
1708
.
26.
Zhang
,
G.
,
Li
,
H.
,
Zhang
,
Z.
,
Ming
,
W.
,
Wang
,
N.
, and
Huang
,
Y.
,
2016
, “
Vibration Modeling and Analysis of Wire During the WEDM Process
,”
Mach. Sci. Technol.
,
20
(
2
), pp.
173
186
.
27.
Abyar
,
H.
,
Abdullah
,
A.
, and
Akbarzadeh
,
A.
,
2018
, “
Analyzing Wire Deflection Errors of WEDM Process on Small Arced Corners
,”
J. Manuf. Process.
,
36
(
1
), pp.
216
223
.
28.
Meriam
,
J. L.
,
2002
,
Engineering Mechanics—Statics
,
Wiley
,
New York
.
29.
ASM Handbook Committee
,
1991
,
ASM Handbook Volume 4 Heat Treating
,
ASM Standards
, American Society for Metals, Materials Park, OH.
30.
Charmilles Company,
1989
,
User Manual ROBOFIL 200
,
Charmilles Technologies
,
Meyrin, Switzerland
.
31.
Abdullah
,
A.
,
1989
, “
Voltage Injection and Performance Evaluation in Electrical Discharge Machining
,” Ph.D. dissertation, Victoria University of Manchester, Manchester, UK.
32.
Mujumdar
,
S. S.
,
Currel
,
D.
,
Kapoor
,
S. G.
, and
Ruzic
,
D.
,
2014
, “
A Model of Micro Electro-Discharge Machining Plasma Discharge in Deionized Water
,”
ASME J. Manuf. Sci. Eng.
,
136
, p.
031011
.
33.
Lin, C. T.
,
Chow, H. M.
,
Yang, L. D.
, and
Chen Y. F.
,
2007
, “
Feasibility Study of Micro-Slit EDM Machining Using Pure Water
,”
Int. J. Adv. Manuf. Technol.
,
34
(
1–2
), pp.
104
110
.
34.
Wetz
,
D. A.
,
2006
, “
The Impact of Field Enhancements and Charge Injection on the Pulsed Breakdown Strength of Water
,” Ph.D. dissertation, Texas Tech University, Lubbock, TX.
35.
Ekmekci
,
B.
,
Yasar
,
H.
, and
Ekmekci
,
N.
,
2016
, “
A Discharge Separation Model for Powder Mixed Electrical Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081006
.
36.
Dhanik
,
S.
, and
Joshi
,
S. S.
,
2005
, “
Modeling of a Single Resistance Capacitance Pulse Discharge in Micro-Electro Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
759
767
.
37.
Yeo
,
S. H.
,
Kurnia
,
W.
, and
Tan
,
P. C.
,
2008
, “
Critical Assessment and Numerical Comparison of Electro-Thermal Models in EDM
,”
J. Mater. Process. Technol.
,
203
(
1–3
), pp.
241
251
.
38.
Tao
,
J.
,
Ni
,
J.
, and
Shih
,
A. J.
,
2012
, “
Modeling of the Anode Crater Formation in Electrical Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011002
.
39.
Yeo
,
S. H.
,
Kurnia
,
W.
, and
Tan
,
P. C.
,
2007
, “
Electro-Thermal Modeling of Anode and Cathode in Micro-EDM
,”
J. Phys. D.
,
40
(
8
), pp.
2513
2521
.
You do not currently have access to this content.