Additive manufacturing (or three-dimensional (3D) printing) is constantly growing as an innovative process for the production of complex-shape components. Among the seven recognized 3D printing technologies, fused deposition modeling (FDM) covers a very important role, not only for producing representative 3D models, but, mainly due to the development of innovative material like Peek and Ultem, also for realizing structurally functional components. However, being FDM a production process involving high thermal gradients, non-negligible deformations and residual stresses may affect the 3D printed component. In this work we focus on meso/macroscopic simulations of the FDM process using abaqus software. After describing in detail the methodological process, we investigate the impact of several parameters and modeling choices (e.g., mesh size, material model, time-step size) on simulation outcomes and we validate the obtained results with experimental measurements.

References

References
1.
Crump
,
S.
,
1992
, “
Apparatus and Method for Creating Three-Dimensional Objects
,” Stratasys Inc., Eden Prairie, MI, U.S. Patent No.
US5121329A
.https://patents.google.com/patent/US5121329A/en
2.
Guo
,
N.
, and
Leu
,
M.
,
2013
, “
Additive Manufacturing: Technology, Applications and Research Needs
,”
Front. Mech. Eng.
,
8
(
3
), pp.
215
243
.
3.
Auricchio
,
F.
, and
Marconi
,
S.
,
2016
, “
3D Printing: Clinical Applications in Orthopaedics and Traumatology
,”
EFORT Open Rev.
,
1
(
5
), pp.
121
127
.
4.
Massoni
,
E.
,
Silvestri
,
L.
,
Bozzi
,
M.
,
Perregrini
,
L.
,
Alaimo
,
G.
,
Marconi
,
S.
, and
Auricchio
,
F.
,
2016
, “
Characterization of 3D-Printed Dielectric Substrates With Different Infill for Microwave Applications
,” IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (
IMWS-AMP
), Chengdu, China, July 20–22, pp.
1
4
.
5.
Auricchio
,
F.
,
Greco
,
A.
,
Alaimo
,
G.
,
Giacometti
,
V.
,
Marconi
,
S.
, and
Mauri
,
V.
, 2017, “
3D Printing Technology for Buildings Accessibility: The Tactile Map for MTE Museum in Pavia
,”
J. Civ. Eng. Archit.
, 11, pp. 736–747.
6.
Zhang, Y.
, and
Chou, Y.
, 2006. “
Three-Dimensional Finite Element Analysis Simulations of the Fused Deposition Modeling Process
,”
Proc. Inst. Mech. Eng., Part B
,
220
(10), pp. 1663–1671.
7.
Bellehumeur
,
C.
,
Li
,
L.
,
Sun
,
Q.
, and
Gu
,
P.
,
2004
, “
Modeling of Bond Formation Between Polymer Filaments in the Fused Deposition Modeling Process
,”
J. Manuf. Process.
,
6
(
2
), pp.
170
178
.
8.
Wittbrodt
,
B.
, and
Pearce
,
J.
,
2015
, “
The Effects of PLA Color on Material Properties of 3-d Printed Components
,”
Addit. Manuf.
,
8
, pp.
110
116
.
9.
Lieneke
,
T.
,
Denzer
,
V.
,
Adam
,
G.
, and
Zimmer
,
D.
,
2016
, “
Dimensional Tolerances for Additive Manufacturing: Experimental Investigation for Fused Deposition Modeling
,”
Procedia CIRP
,
43
, pp.
286
291
.
10.
Ziemian
,
C.
,
Sharma
,
M.
, and
Ziemian
,
S.
,
2012
, “
Anisotropic Mechanical Properties of Abs Parts Fabricated by Fused Deposition Modeling
,”
Mechanical Engineering
,
InTech Open
, London.
11.
Alaimo
,
G.
,
Marconi
,
S.
,
Costato
,
L.
, and
Auricchio
,
F.
,
2017
, “
Influence of Meso-Structure and Chemical Composition on FDM 3D-Printed Parts
,”
Compos. Part B: Eng.
,
113
, pp.
371
380
.
12.
Croccolo
,
D.
,
Agostinis
,
M. D.
, and
Olmi
,
G.
,
2013
, “
Experimental Characterization and Analytical Modelling of the Mechanical Behaviour of Fused Deposition Processed Parts Made of ABS-M30
,”
Comput. Mater. Sci.
,
79
, pp.
506
518
.
13.
Domingo-Espin
,
M.
,
Puigoriol-Forcada
,
J.
,
Garcia-Granada
,
A.
,
Lluma
,
J.
,
Borros
,
S.
, and
Reyes
,
G.
,
2015
, “
Mechanical Property Characterization and Simulation of Fused Deposition Modeling Polycarbonate Parts
,”
Mater. Des.
,
83
, pp.
670
677
.
14.
Zhang
,
Y.
, and
Chou
,
K.
,
2008
, “
A Parametric Study of Part Distortions in Fused Deposition Modelling Using Three-Dimensional Finite Element Analysis
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
222
(
8
), pp.
959
968
.
15.
Courter
,
B.
,
Savane
,
V.
,
Bi
,
J.
,
Dev
,
S.
, and
Hansen
,
C.
,
2017
, “
Finite Element Simulation of the Fused Deposition Modelling Process
,”
NAFEMS World Congress
, Stockholm, Sweden, June 11–14, pp.
11
14
.
16.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
, and
Everson
,
R.
,
2013
, “
Finite Element Simulation of the Temperature and Stress Fields in Single Layers Built Without-Support in Selective Laser Melting
,”
Mater. Des.
,
52
, pp.
638
647
.
17.
Schoinochoritis
,
B.
,
Chantzis
,
D.
, and
Salonitis
,
K.
,
2017
, “
Simulation of Metallic Powder Bed Additive Manufacturing Processes With the Finite Element Method: A Critical Review
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
231
(
1
), pp.
96
117
.
18.
Tiganis
,
B.
,
Burn
,
L.
,
Davis
,
P.
, and
Hill
,
A.
,
2002
, “
Thermal Degradation of Acrylonitrile–Butadiene–Styrene (ABS) Blends
,”
Polym. Degradation Stability
,
76
(
3
), pp.
425
434
.
19.
Hieber, C. A.
, 1987, “
Melt-Viscosity Characterization and Its Application to Injection Molding
,”
Injection and Compression Molding Fundamentals
, AI Isayev, ed., CRC Press, Boca Raton, FL.
20.
Song
,
P.
,
Cao
,
Z.
,
Meng
,
Q.
,
Fu
,
S.
,
Fang
,
Z.
,
Wu
,
Q.
, and
Ye
,
J.
,
2012
, “
Effect of Lignin Incorporation and Reactive Compatibilization on the Morphological, Rheological, and Mechanical Properties of ABS Resin
,”
J. Macromol. Sci., Part B
,
51
(
4
), pp.
720
735
.
21.
Armillotta
,
A.
,
Bellotti
,
M.
, and
Cavallaro
,
M.
,
2018
, “
Warpage of FDM Parts: Experimental Tests and Analytic Model
,”
Rob. Comput.-Integr. Manuf.
,
50
, pp.
140
152
.
22.
Richeton
,
J.
,
Ahzi
,
S.
,
Daridon
,
L.
, and
Rémond
,
Y.
,
2005
, “
A Formulation of the Cooperative Model for the Yield Stress of Amorphous Polymers for a Wide Range of Strain Rates and Temperatures
,”
Polymers
,
46
(
16
), pp.
6035
6043
.
23.
Richeton
,
J.
,
Ahzi
,
S.
,
Vecchio
,
K.
,
Jiang
,
F.
, and
Adharapurapu
,
R.
,
2006
, “
Influence of Temperature and Strain Rate on the Mechanical Behavior of Three Amorphous Polymers: Characterization and Modeling of the Compressive Yield Stress
,”
Int. J. Solids Struct.
,
43
(
7–8
), pp.
2318
2335
.
24.
Rault
,
J.
,
1998
, “
Yielding in Amorphous and Semi-Crystalline Polymers: The Compensation Law
,”
J. Non-Crystalline Solids
,
235–237
, pp.
737
741
.
25.
Rodríguez
,
J.
,
Thomas
,
J.
, and
Renaud
,
J.
,
2003
, “
Mechanical Behavior of Acrylonitrile Butadiene Styrene Fused Deposition Materials Modeling
,”
Rapid Prototyping J.
,
9
(
4
), pp.
219
230
.
26.
Ning
,
F.
,
Cong
,
W.
,
Hu
,
Y.
, and
Wang
,
H.
,
2017
, “
Additive Manufacturing of Carbon Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: Effects of Process Parameters on Tensile Properties
,”
J. Compos. Mater.
,
51
(
4
), pp.
451
462
.
27.
Liao
,
G.
,
Li
,
Z.
,
Cheng
,
Y.
,
Xu
,
D.
,
Zhu
,
D.
,
Jiang
,
S.
,
Guo
,
J.
,
Chen
,
X.
,
Xu
,
G.
, and
Zhu
,
Y.
,
2018
, “
Properties of Oriented Carbon Fiber/Polyamide 12 Composite Parts Fabricated by Fused Deposition Modeling
,”
Mater. Des.
,
139
, pp.
283
292
.
28.
Ryder
,
M.
,
Lados
,
D.
,
Iannacchione
,
G.
, and
Peterson
,
A.
,
2018
, “
Fabrication and Properties of Novel Polymer-Metal Composites Using Fused Deposition Modeling
,”
Compos. Sci. Technol.
,
158
, pp.
43
50
.
You do not currently have access to this content.