Probabilistic sequential prediction of cutting forces is performed applying Bayesian inference to Kienzle force model. The model uncertainties are quantified using the Metropolis algorithm of the Markov chain Monte Carlo (MCMC) approach. Prior probabilities are established and posteriors of the models parameters and force predictions are completed using the results of orthogonal turning experiments. Two types of tools with chamfer (rake) angles of 0 deg and −10 deg are tested under various cutting speed and feed per revolution values. First, Bayesian inference is applied to two force models, Merchant and Kienzle, to investigate the cutting force prediction at the low feed values for the 0 deg rake angle tool. Second, the results of the posteriors of the Kienzle model parameters are used as prior probabilities of the −10 deg rake angle tool. The simulation results of the 0 deg and −10 deg tool rake angle are compared with the experiments which are obtained under other cutting conditions for model verification. Maximum prediction errors of 7% and 9% are reported for the tangential and feed forces, respectively. This indicates a good capability of the Bayesian inference for model parameter identification and cutting force prediction considering the inherent uncertainty and minimum input experimental data.

References

References
1.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process—II: Plasticity Conditions in Orthogonal Cutting
,”
J. Appl. Phys.
,
16
(
6
), pp.
318
324
.
2.
Shamoto, E.
, and
Altıntas, Y.
, 1999, “
Prediction of Shear Angle in Oblique Cutting With Maximum Shear Stress and Minimum Energy Principles
,”
J. Manuf. Sci. Eng.
121
(3), pp. 399–407.
3.
Smithey, D. W.
,
Kapoor, S. G.
, and
DeVor, R. E.
, 2001, “
A New Mechanistic Model for Predicting Worn Tool Cutting Forces
,”
Mach. Sci. Technol.
,
5
(1), pp. 23–42.
4.
Schmitz
,
T. L.
,
Smith
,
K. S.
, and
Dynamics
,
M.
,
2009
, “
Milling Dynamics
,”
Milling
,
Springer US
,
Boston, MA
.
5.
Karandikar
,
J. M.
,
2013
,
The Fundamental Application of Decision Analysis to Manufacturing
,
University of North Carolina at Charlotte
,
Charlotte, NC
.
6.
Karandikar
,
J. M.
,
Abbas
,
A. E.
, and
Schmitz
,
T. L.
,
2014
, “
Tool Life Prediction Using Bayesian Updating. Part 1: Milling Tool Life Model Using a Discrete Grid Method
,”
Precis. Eng.
,
38
(
1
), pp.
9
17
.
7.
Karandikar
,
J. M.
,
Abbas
,
A. E.
, and
Schmitz
,
T. L.
,
2014
, “
Tool Life Prediction Using Bayesian Updating. Part 2: Turning Tool Life Using a Markov Chain Monte Carlo Approach
,”
Precis. Eng.
,
38
(
1
), pp.
18
27
.
8.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
1092
.
9.
Niaki
,
A. F.
,
Ulutan
,
D.
, and
Mears
,
L.
,
2016
, “
Parameter Inference Under Uncertainty in End-Milling γ′-Strengthened Difficult-to-Machine Alloy
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061014
.
10.
Niaki
,
F. A.
,
Ulutan
,
D.
, and
Mears
,
L.
,
2015
, “
Parameter Estimation Using Markov Chain Monte Carlo Method in Mechanistic Modeling of Tool Wear During Milling
,”
ASME
Paper No. MSEC2015-9357
.
11.
Gözü
,
E.
, and
Karpat
,
Y.
,
2017
, “
Uncertainty Analysis of Force Coefficients During Micromilling of Titanium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
93
(
1–4
), pp.
839
855
.
12.
Schmitz
,
T. L.
,
Karandikar
,
J.
,
Ho Kim
,
N.
, and
Abbas
,
A.
,
2011
, “
Uncertainty in Machining: Workshop Summary and Contributions
,”
ASME J. Manuf. Sci. Eng.
,
133
(
5
), p.
051009
.
13.
Mehta
,
P.
,
Kuttolamadom
,
M.
, and
Mears
,
L.
,
2017
, “
Mechanistic Force Model for Machining Process—Theory and Application of Bayesian Inference
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9–12
), pp.
3673
3682
.
14.
Weber
,
M.
,
Hochrainer
,
T.
,
Gumbsch
,
P.
,
Autenrieth
,
H.
,
Delonnoy
,
L.
,
Schulze
,
V.
,
Löhe
,
D.
,
Kotschenreuther
,
J.
, and
Fleischer
,
J.
,
2007
, “
Investigation of Size-Effects in Machining With Geometrically Defined Cutting Edges
,”
Mach. Sci. Technol.
,
11
(
4
), pp.
447
473
.
15.
Vollertsen
,
F.
,
Biermann
,
D.
,
Hansen
,
H. N.
,
Jawahir
,
I. S.
, and
Kuzman
,
K.
,
2009
, “
Size Effects in Manufacturing of Metallic Components
,”
CIRP Ann.-Manuf. Technol.
,
58
(
2
), pp.
566
587
.
16.
Altintas
,
Y.
, and
Ber
,
A.
,
2001
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
, Cambridge, UK.
17.
Klocke
,
F.
,
Adams
,
O.
,
Auerbach
,
T.
,
Gierlings
,
S.
,
Kamps
,
S.
,
Rekers
,
S.
,
Veselovac
,
D.
,
Eckstein
,
M.
,
Kirchheim
,
A.
,
Blattner
,
M.
,
Thiel
,
R.
, and
Kohler
,
D.
, 2015, “
New Concepts of Force Measurement Systems for Specific Machining Processes in Aeronautic Industry
,”
CIRP J. Manuf. Sci. Technol.
,
9
, pp. 31–38.
18.
Andrieu
,
C.
,
De Freitas
,
N.
,
Doucet
,
A.
, and
Jordan
,
M. I.
,
2003
, “
An Introduction to MCMC for Machine Learning
,”
Mach. Learn.
,
50
(
1/2
), pp.
5
43
.
19.
Roberts
,
G. O.
, and
Rosenthal
,
J. S.
,
2001
, “
Optimal Scaling for Various Metropolis-Hastings Algorithms
,”
Stat. Sci.
,
16
(
4
), pp.
351
367
.
20.
Hoff
,
P. D.
,
2009
,
A First Course in Bayesian Statistical Methods
,
Springer
,
New York
.
21.
Niaki
,
F. A.
,
2016
,
A Probabilistic-Based Approach to Monitoring Tool Wear State and Assessing Its Effect on Workpiece Quality in Nickel-Based Alloys
,
Clemson University
, Clemson, SC.
22.
Geweke
,
J.
,
1992
, “
Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments
,”
Bayesian Stat.
,
4
, pp.
169
193
.
23.
Schimmel
,
R. J.
,
Endres
,
W. J.
, and
Stevenson
,
R.
,
2002
, “
Application of an Internally Consistent Material Model to Determine the Effect of Tool Edge Geometry in Orthogonal Machining
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), p.
536
.
24.
Denkena
,
B.
, and
Tönshoff, H. K.
,
2011
,
Spanen: Grundlagen
,
Springer
, Berlin.
You do not currently have access to this content.