Laser powder bed fusion (LPBF) has the ability to produce three-dimensional lightweight metal parts with complex shapes. Extensive investigations have been conducted to tackle build accuracy problems caused by shape complexity. For metal parts with stringent requirements, surface roughness, laser beam positioning error, and part location effects can all affect the shape accuracy of LPBF built products. This study develops a data-driven predictive approach as a promising solution for geometric accuracy improvement in LPBF processes. To address the shape complexity issue, a prescriptive modeling approach is adopted to minimize geometrical deviations of built products through compensating computer aided design models, as opposed to changing process parameters. It allows us to predict and control a wide range of shapes starting from a limited set of measurements on basic benchmark geometries. An error decomposition and compensation scheme is developed to decouple the influence from different error components and to reduce the shape deviations caused by part geometrical deviation, laser beam positioning error, and other location effects simultaneously via an integrated modeling and compensation framework. Experimentation and data collection are conducted to investigate error sources and to validate the developed modeling and accuracy control methods.

References

References
1.
Wohlers Associates,
2018
, “
3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report
,” Wohlers Associates Inc., Fort Collins, CO, Wohlers Report 2018.
2.
Gibson
,
I.
,
Rosen
,
D. W.
,
Stucker
,
B.
, et al. .,
2010
,
Additive Manufacturing Technologies
, Vol.
238
,
Springer
.
3.
Sames
,
W. J.
,
List
,
F.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
315
360
.
4.
Olakanmi
,
E. O. T.
,
Cochrane
,
R.
, and
Dalgarno
,
K.
,
2015
, “
A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties
,”
Prog. Mater. Sci.
,
74
, pp.
401
477
.
5.
Mani
,
M.
,
Feng
,
S.
,
Lane
,
B.
,
Donmez
,
A.
,
Moylan
,
S.
, and
Fesperman
,
R.
,
2015
,
Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes
,
US Department of Commerce, National Institute of Standards and Technology
, Gaithersburg, MD.
6.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
7.
Spears
,
T. G.
, and
Gold
,
S. A.
,
2016
, “
In-Process Sensing in Selective Laser Melting (SLM) Additive Manufacturing
,”
Integr. Mater. Manuf. Innovation
,
5
(
1
), p.
2
.
8.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of in-Situ Process Monitoring and in-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
9.
Grasso
,
M.
, and
Colosimo
,
B. M.
,
2017
, “
Process Defects and in Situ Monitoring Methods in Metal Powder Bed Fusion: A Review
,”
Meas. Sci. Technol.
,
28
(
4
), p.
044005
.
10.
Thomas
,
D.
,
2009
, “
The Development of Design Rules for Selective Laser Melting
,”
Ph.D. dissertation
, University of Wales, Cardiff, UK.http://hdl.handle.net/10369/913
11.
Sharrat
,
B.
,
2015
, “
Non-Destructive Techniques and Technologies for Qualification of Additive Manufactured Parts and Processes—A Literature Review
,” Sharratt Research and Consulting Inc., Victoria, BC, Contract Report No. DRDC-RDDC-2015-C035.
12.
Abd-Elghany
,
K.
, and
Bourell
,
D.
,
2012
, “
Property Evaluation of 304l Stainless Steel Fabricated by Selective Laser Melting
,”
Rapid Prototyping J.
,
18
(
5
), pp.
420
428
.
13.
Moylan
,
S. P.
,
Drescher
,
J.
, and
Donmez
,
M. A.
,
2014
, “
Powder Bed Fusion Machine Performance Testing
,”
ASPE Spring Topical Meeting—Dimensional Accuracy and Surface Finish in Additive Manufacturing
, Berkeley, CA, Apr. 14–16, pp. 123–126.https://www.nist.gov/publications/powder-bed-fusion-machine-performance-testing
14.
Foster
,
B.
,
Reutzel
,
E.
,
Nassar
,
A.
,
Hall
,
B.
,
Brown
,
S.
, and
Dickman
,
C.
,
2015
, “
Optical, Layerwise Monitoring of Powder Bed Fusion
,”
26th International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 10–12.http://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-24-Foster.pdf
15.
Almabrouk Mousa
,
A.
, and
Almabrouk Mousa
,
A.
,
2016
, “
Experimental Investigations of Curling Phenomenon in Selective Laser Sintering Process
,”
Rapid Prototyping J.
,
22
(
2
), pp.
405
415
.
16.
Papadakis
,
L.
,
Chantzis
,
D.
, and
Salonitis
,
K.
,
2018
, “
On the Energy Efficiency of Pre-Heating Methods in SLM/SLS Processes
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1–4
), pp.
1325
1338
.
17.
Kruth
,
J.-P.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
, and
Craeghs
,
T.
,
2007
, “
Feedback Control of Selective Laser Melting
,”
Third International Conference on Advanced Research in Virtual and Rapid Prototyping
, pp.
521
527
.
18.
Yasa
,
E.
,
Deckers
,
J.
,
Craeghs
,
T.
,
Badrossamay
,
M.
, and
Kruth
,
J.-P.
,
2009
, “
Investigation on Occurrence of Elevated Edges in Selective Laser Melting
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
673
85
.
19.
Huang
,
Q.
,
Zhang
,
J.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2015
, “
Optimal Offline Compensation of Shape Shrinkage for Three-Dimensional Printing Processes
,”
IIE Trans.
,
47
(
5
), pp.
431
441
.
20.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Predictive Modeling of Geometric Deviations of 3D Printed Products-a Unified Modeling Approach for Cylindrical and Polygon Shapes
,”
IEEE International Conference on Automation Science and Engineering (CASE)
, Taipei, Taiwan, Aug. 18–22, pp.
25
30
.
21.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061008
.
22.
Sabbaghi
,
A.
,
Dasgupta
,
T.
,
Huang
,
Q.
, and
Zhang
,
J.
,
2014
, “
Inference for Deformation and Interference in 3D Printing
,”
Ann. Appl. Stat.
,
8
(
3
), pp.
1395
1415
.
23.
Sabbaghi
,
A.
,
Huang
,
Q.
, and
Dasgupta
,
T.
,
2015
, “
Bayesian Additive Modeling for Quality Control of 3d Printed Products
,”
IEEE International Conference on Automation Science and Engineering (CASE),
pp.
906
911
.
24.
Sabbaghi
,
A.
,
Huang
,
Q.
, and
Dasgupta
,
T.
,
2017
, “
Bayesian Model Building From Small Samples of Disparate Data for Capturing in-Plane Deviation in Additive Manufacturing
,”
Technometrics
, (epub).
25.
Huang
,
Q.
,
2016
, “
An Analytical Foundation for Optimal Compensation of Three-Dimensional Shape Deformation in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061010
.
26.
Luan
,
H.
, and
Huang
,
Q.
,
2015
, “
Predictive Modeling of in-Plane Geometric Deviation for 3D Printed Freeform Products
,”
IEEE International Conference on Automation Science and Engineering (CASE)
, pp.
912
917
.
27.
Luan
,
H.
, and
Huang
,
Q.
,
2017
, “
Prescriptive Modeling and Compensation of in-Plane Shape Deformation for 3D Printed Freeform Products
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
1
), pp.
73
82
.
28.
Song
,
S.
,
Wang
,
A.
,
Huang
,
Q.
, and
Tsung
,
F.
,
2014
, “
Shape Deviation Modeling for Fused Deposition Modeling Processes
,”
IEEE International Conference on Automation Science and Engineering (CASE)
, pp.
758
763.
29.
Wang
,
A.
,
Song
,
S.
,
Huang
,
Q.
, and
Tsung
,
F.
,
2017
, “
In-Plane Shape-Deviation Modeling and Compensation for Fused Deposition Modeling Processes
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
2
), pp.
968
976
.
30.
Jin
,
Y.
,
Qin
,
S. J.
, and
Huang
,
Q.
,
2015
, “
Out-of-Plane Geometric Error Prediction for Additive Manufacturing
,”
IEEE International Conference on Automation Science and Engineering (CASE)
, pp.
918
923
.
31.
Jin
,
Y.
,
Qin
,
S. J.
, and
Huang
,
Q.
,
2016
, “
Offline Predictive Control of out-of-Plane Shape Deformation for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121005
.
32.
Jin
,
Y.
,
Qin
,
S. J.
, and
Huang
,
Q.
,
2016
, “
Prescriptive Analytics for Understanding of Out-of-Plane Deformation in Additive Manufacturing
,”
IEEE International Conference on Automation Science and Engineering (CASE)
, pp.
786
791
.
33.
Ladewig
,
A.
,
Schlick
,
G.
,
Fisser
,
M.
,
Schulze
,
V.
, and
Glatzel
,
U.
,
2016
, “
Influence of the Shielding Gas Flow on the Removal of Process by-Products in the Selective Laser Melting Process
,”
Addit. Manuf.
,
10
, pp.
1
9
.
34.
Anwar
,
A. B.
, and
Pham
,
Q. C.
,
2017
, “
Selective Laser Melting of alsi10 mg: Effects of Scan Direction, Part Placement and Inert Gas Flow Velocity on Tensile Strength
,”
J. Mater. Process. Technol.
,
240
, pp.
388
396
.
35.
Wang
,
H.
,
Huang
,
Q.
, and
Katz
,
R.
,
2005
, “
Multi-Operational Machining Processes Modeling for Sequential Root Cause Identification and Measurement Reduction
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
512
521
.
36.
Wang
,
H.
, and
Huang
,
Q.
,
2006
, “
Error Cancellation Modeling and Its Application to Machining Process Control
,”
IIE Trans.
,
38
(
4
), pp.
355
364
.
37.
Wang
,
H.
, and
Huang
,
Q.
,
2007
, “
Using Error Equivalence Concept to Automatically Adjust Discrete Manufacturing Processes for Dimensional Variation Control
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
644
652
.
38.
Sabbaghi
,
A.
, and
Huang
,
Q.
,
2016
, “
Predictive Model Building Across Different Process Conditions and Shapes in 3D Printing
,”
IEEE International Conference on Automation Science and Engineering (CASE)
, pp.
774
779
.
39.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
589
597
.
40.
Wang
,
D.
,
Wang
,
D.
,
Liu
,
Y.
,
Liu
,
Y.
,
Yang
,
Y.
,
Yang
,
Y.
,
Xiao
,
D.
, and
Xiao
,
D.
,
2016
, “
Theoretical and Experimental Study on Surface Roughness of 316l Stainless Steel Metal Parts Obtained Through Selective Laser Melting
,”
Rapid Prototyping J.
,
22
(
4
), pp.
706
716
.
41.
Coope
,
I. D.
,
1993
, “
Circle Fitting by Linear and Nonlinear Least Squares
,”
J. Optim. Theory Appl.
,
76
(
2
), pp.
381
388
.
You do not currently have access to this content.