Hybrid manufacturing has become particularly attractive for refurbishing of high-value freeform components. Components may experience unique geometric distortions and/or wear-driven material loss in service, which require the use of part-specific, adaptive repair strategies. The current work presents an integrated adaptive geometry transformation method for additive/subtractive hybrid manufacturing based on rigid and nonrigid registrations of parent region material and geometric interpolation of the repair region material. In this approach, rigid registration of nominal part geometry to actual part geometry is accomplished using iterative alignment of profiles in the parent material. Nonrigid registration is used to morph nominal part geometry to actual part geometry by transformation of the profile mean line. Adaptive additive and subtractive tool paths are then used to add material based on constant stock margin requirements, as well as to produce blend repairs with smooth transition between parent and repair regions. A range of part deformation conditions due to profile twist and length changes are evaluated for the case of a compressor blade/airfoil geometry. Accuracy of the resulting adaptive geometry transformation method were quantified by (1) surface comparisons of actual and transformed nominal geometry and (2) blend region surface accuracy. Performance of the adaptive repair strategy relative to a naïve strategy is evaluated by the consideration of material efficiency and process cycle time. It is shown that the adaptive repair strategy resulted in an increase in material efficiency by 42.2% and a decrease in process time by 17.8%, depending on the initial deformation imposed on the part geometry.

References

References
1.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.-Manuf. Technol.
,
65
(
2
), pp.
737
760
.
2.
Lauwers
,
B.
,
Klocke
,
F.
,
Klink
,
A.
,
Tekkaya
,
A. E.
,
Neugebauer
,
R.
, and
Mcintosh
,
D.
,
2014
, “
Hybrid Processes in Manufacturing
,”
CIRP Ann.-Manuf. Technol.
,
63
(
2
), pp.
561
583
.
3.
Soshi
,
M.
,
Ring
,
J.
,
Young
,
C.
,
Oda
,
Y.
, and
Mori
,
M.
,
2017
, “
Innovative Grid Molding and Cooling Using an Additive and Subtractive Hybrid CNC Machine Tool
,”
CIRP Ann.-Manuf. Technol.
,
66
(
1
), pp.
401
404
.
4.
Yamazaki
,
T.
,
2016
, “
Development of a Hybrid Multi-Tasking Machine Tool: Integration of Additive Manufacturing Technology With CNC Machining
,”
Procedia CIRP
,
42
, pp.
81
86
.
5.
Newman
,
S. T.
,
Zhu
,
Z. C.
,
Dhokia
,
V.
, and
Shokrani
,
A.
,
2015
, “
Process Planning for Additive and Subtractive Manufacturing Technologies
,”
CIRP Ann.-Manuf. Technol.
,
64
(
1
), pp.
467
470
.
6.
Ren
,
L.
,
Sparks
,
T.
,
Ruan
,
J. Z.
, and
Liou
,
F.
,
2010
, “
Integrated Process Planning for a Multiaxis Hybrid Manufacturing System
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021006
.
7.
Jones
,
J. B.
,
McNutt
,
P.
,
Tosi
,
R.
,
Perry
,
C.
, and
Wimpenny
,
D. I.
,
2012
, “
Remanufacture of Turbine Blades by Laser Cladding, Machining and In-Process Scanning in a Single Machine
,”
23rd Annual International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
821
827
https://www.dora.dmu.ac.uk/xmlui/handle/2086/7552.
8.
Ren
,
L.
,
Padathu
,
A. P.
,
Ruan
,
J.
, and
Liou
,
F.
,
2008
, “Three Dimensional Die Repair Using a Hybrid Manufacturing System,”
SFF Symposium, Austin, TX
, Aug. 4–6.
9.
Choi
,
D.-S.
,
Lee
,
S. H.
,
Shin
,
B. S.
,
Whang
,
K. H.
,
Song
,
Y. A.
,
Park
,
S. H.
, and
Jee
,
H. S.
,
2001
, “
Development of a Direct Metal Freeform Fabrication Technique Using CO2 Laser Welding and Milling Technology
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
273
279
.,
10.
Karunakaran
,
K.
,
Suryakumar
,
S.
,
Pushpa
,
V.
, and
Akula
,
S.
,
2009
, “
Retrofitment of a CNC Machine for Hybrid Layered Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
45
(
7–8
), pp.
690
703
.
11.
Flynn
,
J. M.
,
Shokrani
,
A.
,
Newman
,
S. T.
, and
Dhokia
,
V.
,
2016
, “
Hybrid Additive and Subtractive Machine Tools–Research and Industrial Developments
,”
Int. J. Mach. Tools Manuf.
,
101
, pp.
79
101
.
12.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
.
13.
Bremer
,
C.
,
2005
, “
Automated Repair and Overhaul of Aero-Engine and Industrial Gas Turbine Components
,”
ASME
Paper No. GT2005-68193.
14.
Gao
,
J.
,
Folkes
,
A.
,
Yilmaz
,
O.
, and
Gindy
,
N.
,
2005
, “
Investigation of a 3D Non-Contact Measurement Based Blade Repair Integration System
,”
Aircr. Eng. Aerosp. Technol.
,
77
(
1
), pp.
34
41
.
15.
Qi
,
H.
,
Azer
,
M.
, and
Singh
,
P.
,
2010
, “
Adaptive Toolpath Deposition Method for Laser Net Shape Manufacturing and Repair of Turbine Compressor Airfoils
,”
Int. J. Adv. Manuf. Technol.
,
48
(
1–4
), pp.
121
131
.
16.
Zheng
,
J. M.
,
Li
,
Z. G.
, and
Chen
,
X.
,
2006
, “
Worn Area Modeling for Automating the Repair of Turbine Blades
,”
Int. J. Adv. Manuf. Technol.
,
29
(
9–10
), pp.
1062
1067
.
17.
Piya
,
C.
,
Wilson
,
J.
,
Murugappan
,
S.
,
Shin
,
Y.
, and
Ramani
,
K.
,
2011
, “
Virtual Repair: Geometric Reconstruction for Remanufacturing Gas Turbine Blades
,”
ASME
Paper No. DETC2011-48652.
18.
Yilmaz
,
O.
,
Gindy
,
N.
, and
Gao
,
J.
,
2010
, “
A Repair and Overhaul Methodology for Aeroengine Components
,”
Rob. Comput.-Integr. Manuf.
,
26
(
2
), pp.
190
201
.
19.
Rong
,
Y.
,
Xu
,
J.
, and
Sun
,
Y.
,
2014
, “
A Surface Reconstruction Strategy Based on Deformable Template for Repairing Damaged Turbine Blades
,”
Proc. Inst. Mech. Eng., Part G
,
228
(
12
), pp.
2358
2370
.
20.
Yun
,
Z.
,
Zhi-Tong
,
C.
, and
Tao
,
N.
,
2015
, “
Reverse Modeling Strategy of Aero-Engine Blade Based on Design Intent
,”
Int. J. Adv. Manuf. Technol.
,
81
(
9–12
), pp.
1781
1796
.
21.
Ke
,
Y. L.
,
Fan
,
S. Q.
,
Zhu
,
W. D.
,
Li
,
A.
,
Liu
,
F. S.
, and
Shi
,
X. Q.
,
2006
, “
Feature-Based Reverse Modeling Strategies
,”
Comput.-Aided Des.
,
38
(
5
), pp.
485
506
.
22.
Li
,
Y. Q.
, and
Ni
,
J.
,
2009
, “
Constraints Based Nonrigid Registration for 2D Blade Profile Reconstruction in Reverse Engineering
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
3
), p.
031005
.
23.
Dong
,
Y.
,
Zhang
,
D.
,
Bu
,
K.
,
Dou
,
Y.
, and
Wang
,
W.
,
2011
, “
Geometric Parameter-Based Optimization of the Die Profile for the Investment Casting of Aerofoil-Shaped Turbine Blades
,”
Int. J. Adv. Manuf. Technol.
,
57
(
9–12
), p.
1245
.
24.
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “
A Method for Registration of 3-D Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
14
(
2
), pp.
239
256
.
25.
Slabaugh
,
G. G.
,
1999
, “
Computing Euler Angles From a Rotation Matrix
,” City University of London, London, Technical Report, pp.
39
63
.
26.
Sharman
,
A.
,
Dewes
,
R. C.
, and
Aspinwall
,
D. K.
,
2001
, “
Tool Life When High Speed Ball Nose End Milling Inconel 718™
,”
J. Mater. Process. Technol.
,
118
(
1–3
), pp.
29
35
.
You do not currently have access to this content.