In this paper, we present a new approach of combining point-by-point selective powder delivery with powder bed fusion for multiple material (metal/glass) components printing. Dual ultrasonic vibration was used to achieve stable flowrates of both 316 L steel and soda-lime glass powders which were dispensed selectively and separately. The effects of the stand-off distance and the scanning speeds on the quality of the formed layers were investigated. The results showed that the ratio between the stand-off distance and the powder size (h/d) should be lower than 3 for accurate selective material deposition. However, in practical processing, for preventing the nozzle from being damaged by the parts, the stand-off distance was larger than three times of the powder size. Different laser processing parameters were developed for processing the metal and glass due to material property differences. The interfaces between 316 L and soda-lime glass were examined. A number of 3D objects consisting of metal and glass were printed using this method.

References

References
1.
Ferraris
,
E.
,
Vleugels
,
J.
,
Guo
,
Y.
,
Bourell
,
D.
,
Kruth
,
J. P.
, and
Lauwers
,
B.
,
2016
, “
Shaping of Engineering Ceramics by Electro, Chemical and Physical Processes
,”
CIRP Ann.-Manuf. Technol.
,
65
(
2
), pp.
761
784
.
2.
Wang
,
W.
, and
Li
,
L.
,
2011
, “
High-Quality High-Material-Usage Multiple-Layer Laser Deposition of Nickel Alloys Using Sonic or Ultrasonic Vibration Powder Feeding
,”
Proc. Inst. Mech. Eng., Part B
,
225
(
1
), pp.
130
139
.
3.
Ning
,
F. D.
,
Hu
,
Y. B.
,
Liu
,
Z. C.
,
Cong
,
W. L.
,
Li
,
Y. Z.
, and
Wang
,
X.
,
2017
, “
L., Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: A Feasibility Study
,”
45th SME North American Manufacturing Research Conference (NAMRC 45)
, Vol.
10
, pp.
771
778
.
4.
Ning
,
F. D.
,
Hu
,
Y. B.
,
Liu
,
Z. C.
,
Wang
,
X. L.
,
Li
,
Y. Z.
, and
Cong
,
W. L.
,
2018
, “
Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: Microstructural and Mechanica Characterization
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p. 061012.
5.
Yap
,
C. Y.
,
Chua
,
C. K.
,
Dong
,
Z. L.
,
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Loh
,
L. E.
, and
Sing
,
S. L.
,
2015
, “
Review of Selective Laser Melting: Materials and Applications
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041101
.
6.
Bourell
,
D.
,
Kruth
,
J. P.
,
Leu
,
M.
,
Levy
,
G.
,
Rosen
,
D.
,
Beese
,
A. M.
, and
Clare
,
A.
,
2017
, “
Materials for Additive Manufacturing
,”
CIRP Ann.
,
66
(
2
), pp.
659
681
.
7.
Khmyrov
,
R. S.
,
Grigoriev
,
S. N.
,
Okunkova
,
A. A.
, and
Gusarov
,
A. V.
,
2014
, “
On the Possibility of Selective Laser Melting of Quartz Glass
,”
Phys. Procedia
,
56
, pp.
345
356
.
8.
Khmyrov
,
R. S.
,
Protasov
,
C. E.
,
Grigoriev
,
S. N.
, and
Gusarov
,
A. V.
,
2016
, “
Crack-Free Selective Laser Melting of Silica Glass: Single Beads and Monolayers on the Substrate of the Same Material
,”
Int. J. Adv. Manuf. Technol.
,
85
(
5–8
), pp.
1461
1469
.
9.
Protasov
,
C. E.
,
Khmyrov
,
R. S.
,
Grigoriev
,
S. N.
, and
Gusarov
,
A. V.
,
2017
, “
Selective Laser Melting of Fused Silica: Interdependent Heat Transfer and Powder Consolidation
,”
Int. J. Heat Mass Transfer
,
104
, pp.
665
674
.
10.
Fateri
,
M.
, and
Gebhardt
,
A.
,
2015
, “
Selective Laser Melting of Soda‐Lime Glass Powder
,”
Int. J. Appl. Ceram. Technol.
,
12
(
1
), pp.
53
61
.
11.
Yves-Christian
,
H.
,
Jan
,
W.
,
Wilhelm
,
M.
,
Konrad
,
W.
, and
Reinhart
,
P.
,
2010
, “
Net Shaped High Performance Oxide Ceramic Parts by Selective Laser Melting
,”
Phys. Procedia
,
5
, pp.
587
594
.
12.
Al-Jamal
,
O.
,
Hinduja
,
S.
, and
Li
,
L.
,
2008
, “
Characteristics of the Bond in Cu–H13 Tool Steel Parts Fabricated Using SLM
,”
CIRP Ann.-Manuf. Technol.
,
57
(
1
), pp.
239
242
.
13.
Geldart
,
D.
,
Harnby
,
N.
, and
Wong
,
A. C.
,
1984
, “
Fluidization of Cohesive Powders
,”
Powder Technol.
,
37
(
1
), pp.
25
37
.
14.
Stichel
,
T.
,
Laumer
,
T.
,
Baumuller
,
T.
,
Amend
,
P.
, and
Roth
,
S.
,
2014
, “
Powder Layer Preparation Using Vibration-Controlled Capillary Steel Nozzles for Additive Manufacturing
,”
Eighth International Conference on Laser Assisted Net Shape Engineering (LANE 2014)
, Vol.
56
, pp.
157
166
.
15.
Matsusaka
,
S.
,
Urakawa
,
M.
, and
Masuda
,
H.
,
1995
, “
Micro-Feeding of Fine Powders Using a Capillary Tube With Ultrasonic Vibration
,”
Adv. Powder Technol.
,
6
(
4
), pp.
283
293
.
16.
Matsusaka
,
S.
,
Yamamoto
,
K.
, and
Masuda
,
H.
,
1996
, “
Micro-Feeding of a Fine Powder Using a Vibrating Capillary Tube
,”
Adv. Powder Technol.
,
7
(
2
), pp.
141
151
.
17.
Lu
,
X.
,
Yang
,
S.
, and
Evans
,
J. R. G.
,
2007
, “
Dose Uniformity of Fine Powders in Ultrasonic Microfeeding
,”
Powder Technol.
,
175
(
2
), pp.
63
72
.
18.
Lu
,
X.
,
Yang
,
S.
, and
Evans
,
J. R. G.
,
2006
, “
Studies on Ultrasonic Microfeeding of Fine Powders
,”
J. Phys. D
,
39
(
11
), p.
2444
.
19.
Lu
,
X.
,
Yang
,
S.
, and
Evans
,
J. R. G.
,
2009
, “
Microfeeding With Different Ultrasonic Nozzle Designs
,”
Ultrasonics
,
49
(
6–7
), pp.
514
521
.
20.
Chianrabutra
,
S.
,
Mellor
,
B. G.
, and
Yang
,
S.
,
2014
,
A Dry Powder Material Delivery Device for Multiple Material Additive Manufacturing
,
University of Southampton
,
Southampton, UK
.
21.
Wei
,
C.
,
Li
,
L.
,
Zhang
,
X. J.
, and
Chueh
,
Y. H.
,
2018
, “
3D Printing of Multiple Metallic Materials Via Modified Selective Laser Melting
,”
CIRP Ann.-Manuf. Technol.
,
67
(
1
), pp.
245
248
.
22.
Tan
,
J. H.
,
Wong
,
W. L. E.
, and
Dalgarno
,
K. W.
,
2017
, “
An Overview of Powder Granulometry on Feedstock and Part Performance in the Selective Laser Melting Process
,”
Addit. Manuf.
,
18
, pp.
228
255
.
23.
Qi
,
L.
,
Zeng
,
X.
,
Zhou
,
J.
,
Luo
,
J.
, and
Chao
,
Y.
,
2011
, “
Stable Micro-Feeding of Fine Powders Using a Capillary With Ultrasonic Vibration
,”
Powder Technol.
,
214
(
2
), pp.
237
242
.
You do not currently have access to this content.