Understanding the capture efficiency of powder during direct laser deposition (DLD) is critical when determining the overall manufacturing costs of additive manufacturing (AM) for comparison to traditional manufacturing methods. By developing a tool to predict the capture efficiency of a particular deposition process, parameter optimization can be achieved without the need to perform a costly and extensive experimental study. The focus of this work is to model the deposition process and acquire the final track geometry and temperature field of a single track deposition of Ti–6Al–4V powder on a Ti–6Al–4V substrate for a four-nozzle powder delivery system during direct laser deposition with a LENS™ system without the need for capture efficiency assumptions by using physical powder flow and laser irradiation profiles to predict capture efficiency. The model was able to predict the track height and width within 2 μm and 31 μm, respectively, or 3.3% error from experimentation. A maximum of 36 μm profile error was observed in the molten pool, and corresponds to errors of 11% and 4% in molten pool depth and width, respectively. Based on experimentation, the capture efficiency of a single track deposition of Ti–6Al–4V was found to be 12.0%, while that from simulation was calculated to be 11.7%, a 2.5% deviation.

References

1.
Atwood
,
C.
,
Griffith
,
M.
,
Schlienger
,
M.
,
Harwell
,
L.
,
Ensz
,
M.
,
Keicher
,
D.
,
Schlienger
,
M.
,
Romero
,
J.
, and
Smugeresky
,
J.
,
1998
, “
Laser Engineered Net Shaping (LENS): A Tool for Direct Fabrication of Metal Parts
,”
The International Congress on Applications of Lasers & Electro-Optics
, Orlando, FL, Nov. 11–16, pp.
16
19
.
2.
Ibarra-Medina
,
J.
,
Vogel
,
M.
, and
Pinkerton
,
A. J.
,
2011
, “
A CFD Model of Laser Cladding: From Deposition Head to Melt Pool Dynamics
,”
The International Congress on Applications of Lasers & Electro-Optics
, Miami, FL, Oct. 6–10, pp.
23
27
.
3.
Lin
,
J.
,
2000
, “
Numerical Simulation of the Focused Powder Streams in Coaxial Laser Cladding
,”
J. Mater. Process. Technol.
,
105
(
1–2
), pp.
17
23
.
4.
Lin
,
J.
, and
Steen
,
W. M.
,
1997
, “
Powder Flow and Catchment During Coaxial Laser Cladding
,”
Proc. SPIE
,
3097
, pp.
517
528
.
5.
Pinkerton
,
A. J.
, and
Li
,
L.
,
2004
, “
Modelling Powder Concentration Distribution From a Coaxial Deposition Nozzle for Laser-Based Rapid Tooling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
33
41
.
6.
Thakar
,
Y. D.
,
Pan
,
H.
, and
Liou
,
F.
,
2004
, “
Numerical and Experimental Analysis of the Powder Flow Streams in the Laser Aided Material Deposition Process
,”
15th Conference on Solid Freeform Fabrication
, Austin TX, Aug. 13–15, pp.
512
522
.
7.
Wen
,
S.
, and
Shin
,
Y. C.
,
2010
, “
Modeling of Transport Phenomena During the Coaxial Laser Direct Deposition Process
,”
J. Appl. Phys.
,
108
(
4
), p.
044908
.
8.
Yang
,
N.
,
2009
, “
Concentration Model Based on Movement Model of Powder Flow in Coaxial Laser Cladding
,”
Opt. Laser Technol.
,
41
(
1
), pp.
94
98
.
9.
Zekovic
,
S.
,
Dwivedi
,
R.
, and
Kovacevic
,
R.
,
2007
, “
Numerical Simulation and Experimental Investigation of Gas–Powder Flow From Radially Symmetrical Nozzles in Laser-Based Direct Metal Deposition
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
112
123
.
10.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
, “
Directed Energy Deposition Processes
,”
Additive Manufacturing Technologies
,
Springer
, New York, pp.
245
268
.
11.
Donachie
,
M. J.
,
2000
,
Titanium: A Technical Guide
,
ASM International
,
Materials Park, OH
, pp.
5
11
.
12.
Rastegari
,
H.
,
Asgari
,
S.
, and
Abbasi
,
S.
,
2011
, “
Producing Ti6Al4V/TiC Composite With Good Ductility by Vacuum Induction Melting Furnace and Hot Rolling Process
,”
Mater. Des.
,
32
(
10
), pp.
5010
5014
.
13.
Mahamood
,
R. M.
,
Akinlabi
,
E. T.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2013
, “
Scanning Velocity Influence on Microstructure, Microhardness and Wear Resistance Performance of Laser Deposited Ti6Al4V/TiC Composite
,”
Mater. Des.
,
50
, pp.
656
666
.
14.
Liu
,
S.
,
Liu
,
Z.
,
Wang
,
Y.
, and
Yue
,
P.
,
2014
, “
Ti-Based Composite Coatings With Gradient TiCx Reinforcements on TC4 Titanium Alloy Prepared by Laser Cladding
,”
Sci. China Technol. Sci.
,
57
(
7
), pp.
1454
1461
.
15.
Mahamood
,
R.
, and
Akinlabi
,
E.
,
2015
, “
Laser Metal Deposition of Functionally Graded Ti6Al4V/TiC
,”
Mater. Des.
,
84
, pp.
402
410
.
16.
Banerjee
,
R.
,
Collins
,
P.
,
Genc
,
A.
, and
Fraser
,
H.
,
2003
, “
Direct Laser Deposition of In Situ Ti–6Al–4V–TiB Composites
,”
Mater. Sci. Eng.: A
,
358
(
1–2
), pp.
343
349
.
17.
Wang
,
F.
,
Mei
,
J.
,
Jiang
,
H.
, and
Wu
,
X.
,
2007
, “
Laser Fabrication of Ti6Al4V/TiC Composites Using Simultaneous Powder and Wire Feed
,”
Mater. Sci. Eng.: A
,
445
, pp.
461
466
.
18.
Wu
,
X.
,
Liang
,
J.
,
Mei
,
J.
,
Mitchell
,
C.
,
Goodwin
,
P.
, and
Voice
,
W.
,
2004
, “
Microstructures of Laser-Deposited Ti6Al4V
,”
Mater. Des.
,
25
(
2
), pp.
137
144
.
19.
Wilson, J. M., Piya, C., Shin, Y. C., Zhao, F., and Ramani, R., 2014, “
Remanufacturing of Turbine Blades by Laser Direct Deposition with Its Energy and Environmental Impact Analysis
,”
J. Cleaner Prod.
,
80
, pp. 170–178.
20.
Shunmugavel
,
M.
,
Polishetty
,
A.
, and
Littlefair
,
G.
,
2015
, “
Microstructure and Mechanical Properties of Wrought and Additive Manufactured Ti6Al4V Cylindrical Bars
,”
Procedia Technol.
,
20
, pp.
231
236
.
21.
Vrancken
,
B.
,
Thijs
,
L.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2012
, “
Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties
,”
J. Alloys Compd.
,
541
, pp.
177
185
.
22.
Yu
,
J.
,
Rombouts
,
M.
,
Maes
,
G.
, and
Motmans
,
F.
,
2012
, “
Material Properties of Ti6Al4V Parts Produced by Laser Metal Deposition
,”
Phys. Procedia
,
39
, pp.
416
424
.
23.
Wilson
,
J. M.
, and
Shin
,
Y. C.
,
2012
, “
Microstructure and Wear Properties of Laser-Deposited Functionally Graded Inconel 690 Reinforced With TiC
,”
Surf. Coat. Technol.
,
207
, pp.
517
522
.
24.
Liu
,
S.
,
Liu
,
Z.
,
Wang
,
Y.
, and
Tang
,
J.
,
2014
, “
A Comparative Study on the High Temperature Corrosion of Tp347 h Stainless Steel, C22 Alloy and Laser-Cladding C22 Coating in Molten Chloride Salts
,”
Corros. Sci.
,
83
, pp.
396
408
.
25.
Zhang
,
Y.
,
Wei
,
Z.
,
Shi
,
L.
, and
Xi
,
M.
,
2008
, “
Characterization of Laser Powder Deposited Ti–TiC Composites and Functional Gradient Materials
,”
J. Mater. Process. Technol.
,
206
(
1–3
), pp.
438
444
.
26.
Qiu
,
C.
,
Ravi
,
G.
,
Dance
,
C.
,
Ranson
,
A.
,
Dilworth
,
S.
, and
Attallah
,
M. M.
,
2015
, “
Fabrication of Large Ti6Al4V Structures by Direct Laser Deposition
,”
J. Alloys Compd.
,
629
, pp.
351
361
.
27.
Kobryn
,
P.
,
Moore
,
E.
, and
Semiatin
,
S.
,
2000
, “
The Effect of Laser Power and Traverse Speed on Microstructure, Porosity, and Build Height in Laser-Deposited Ti6Al4V
,”
Scr. Mater.
,
43
(
4
), pp.
299
305
.
28.
Heigel
,
J.
,
Michaleris
,
P.
, and
Reutzel
,
E.
,
2015
, “
Thermo-Mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti6Al4V
,”
Addit. Manuf.
,
5
, pp.
9
19
.
29.
Peyre
,
P.
,
Aubry
,
P.
,
Fabbro
,
R.
,
Neveu
,
R.
, and
Longuet
,
A.
,
2008
, “
Analytical and Numerical Modelling of the Direct Metal Deposition Laser Process
,”
J. Phys. D: Appl. Phys.
,
41
(
2
), p.
025403
.
30.
Lu
,
Z.
,
Li
,
D.
,
Lu
,
B.
,
Zhang
,
A.
,
Zhu
,
G.
, and
Pi
,
G.
,
2010
, “
The Prediction of the Building Precision in the Laser Engineered Net Shaping Process Using Advanced Networks
,”
Opt. Lasers Eng.
,
48
(
5
), pp.
519
525
.
31.
Shamsaei
,
N.
,
Yadollahi
,
A.
,
Bian
,
L.
, and
Thompson
,
S. M.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part Ii: Mechanical Behavior, Process Parameter Optimization and Control
,”
Addit. Manuf.
,
8
, pp.
12
35
.
32.
Katinas
,
C.
,
Shang
,
W.
,
Shin
,
Y. C.
, and
Chen
,
J.
,
2018
, “
Modeling Particle Spray and Capture Efficiency for Direct Laser Deposition Using a Four Nozzle Powder Injection System
,”
ASME, J. Manuf. Sci. Eng.
,
140
(4), p. 041014.
33.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.
34.
Li
,
D.
, and
Merkle
,
C. L.
,
2006
, “
A Unified Framework for Incompressible and Compressible Fluid Flows
,”
J. Hydrodyn., Ser. B
,
18
(
3
), pp.
113
119
.
35.
Min
,
C.
,
2010
, “
On Reinitializing Level Set Functions
,”
J. Comput. Phys.
,
229
(
8
), pp.
2764
2772
.
36.
Sethian
,
J. A.
, and
Smereka
,
P.
,
2003
, “
Level Set Methods for Fluid Interfaces
,”
Annu. Rev. Fluid Mech.
,
35
(
1
), pp.
341
372
.
37.
Ghods
,
S.
, and
Herrmann
,
M.
,
2013
, “
A Consistent Rescaled Momentum Transport Method for Simulating Large Density Ratio Incompressible Multiphase Flows Using Level Set Methods
,”
Phys. Scr.
, 2013(
T155
), p.
014050
.
38.
Dynamet Holdings Inc.
, 2000, “
Titanium Alloy Ti6Al4V
,” Washington, PA, accessed July 17, 2017 https://cartech.ides.com/datasheet.aspx?i=101&E=269
39.
U.S. Titanium Industry Inc.,
2002, “
Titanium Alloys—Ti6Al4V Grade 5
,” Torrance, CA, accessed July 16, 2017, http://www.azom.com/article.aspx?ArticleID=1547
40.
Boivineau
,
M.
,
Cagran
,
C.
,
Doytier
,
D.
,
Eyraud
,
V.
,
Nadal
,
M.-H.
,
Wilthan
,
B.
, and
Pottlacher
,
G.
,
2006
, “
Thermophysical Properties of Solid and Liquid Ti6Al4V (TA6V) Alloy
,”
Int. J. Thermophys.
,
27
(
2
), pp.
507
529
.
41.
Westerberg
,
K.
,
Merier
,
T.
,
McClelland
,
M.
,
Braun
,
D.
,
Berzins
,
L.
,
Anklam
,
T.
, and
Storer
,
J.
,
1998
, “
Analysis of the E-Beam Evaporation of Titanium and Ti6Al4V
,” Lawrence Livermore National Lab, Livermore CA, Report No. UCRL-JC--128692.
42.
Yang
,
J.
,
Sun
,
S.
,
Brandt
,
M.
, and
Yan
,
W.
,
2010
, “
Experimental Investigation and 3d Finite Element Prediction of the Heat Affected Zone During Laser Assisted Machining of Ti6Al4V Alloy
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2215
2222
.
43.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing
, Cambridge, UK.
44.
Yang
,
G.
,
Ma
,
J.
,
Wang
,
H.-P.
,
Carlson
,
B.
, and
Kovacevic
,
R.
,
2017
, “
Studying the Effect of Lubricant on Laser Joining of Aa 6111 Panels With the Addition of AA 4047 Filler Wire
,”
Mater. Des.
,
116
, pp.
176
187
.
45.
Li
,
X.
,
Xie
,
J.
, and
Zhou
,
Y.
,
2005
, “
Effects of Oxygen Contamination in the Argon Shielding Gas in Laser Welding of Commercially Pure Titanium Thin Sheet
,”
J. Mater. Sci.
,
40
(
13
), pp.
3437
3443
.
46.
Murray
,
J. L.
,
1992
, “
ASM Handbook-Alloy Phase Diagrams
,”
Mater. Park
,
3
(
2
), p.
20
.
47.
Murr
,
L. E.
,
Quinones
,
S. A.
,
Gaytan
,
S. M.
,
Lopez
,
M.
,
Rodela
,
A.
,
Martinez
,
E. Y.
,
Hernandez
,
D. H.
,
Martinez
,
E.
,
Medina
,
F.
, and
Wicker
,
R. B.
,
2009
, “
Microstructure and Mechanical Behavior of Ti6Al4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
1
), pp.
20
32
.
48.
Rai
,
R.
,
Elmer
,
J.
,
Palmer
,
T.
, and
DebRoy
,
T.
,
2007
, “
Heat Transfer and Fluid Flow During Keyhole Mode Laser Welding of Tantalum, Ti6Al4V, 304l Stainless Steel and Vanadium
,”
J. Phys. D: Appl. Phys.
,
40
(
18
), p.
5753
.
49.
Pirch
,
N.
,
Kreutz
,
E.
, and
Ollier
,
B.
,
1996
, “
The Modelling of Heat, Mass and Solute Transport in Surface Processing With Laser Radiation
,”
Laser Process.: Surf. Treat. Film Depos.
,
307
, p.
177
.
50.
He
,
X.
, and
Mazumder
,
J.
,
2007
, “
Transport Phenomena During Direct Metal Deposition
,”
J. Appl. Phys.
,
101
(
5
), p.
053113
.
51.
Manvatkar
,
V.
,
De
,
A.
, and
DebRoy
,
T.
,
2015
, “
Spatial Variation of Melt Pool Geometry, Peak Temperature and Solidification Parameters During Laser Assisted Additive Manufacturing Process
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
924
930
.
You do not currently have access to this content.