In this paper, a theoretical approach to model free deformation of sheet metal via polymer injection pressure is presented. It is a general methodology that can be applied for any situation where a nonuniform pressure distribution is responsible for free deformation of sheet metal within a circular cavity. This approach is composed of two iterative approximation loops. In the outer loop, the radius of curvature at the tip of dome shape was optimized based on the boundary condition at the edge of clamped area while in the inner successive loop, principal stresses determined from plasticity theories were used to satisfy the equilibrium equations. While forming sheet metal via polymer injection is a revolutionary yet complex process, its modeling is challenging. Hence, before implementing this general approach to this process, the modeling methodology as such necessitates a simplified solution for melt flow analysis to obtain a pressure distribution encompassing the entire cavity. To evaluate the proposed model, a customized experimental setup was designed and fabricated, which allows sheet metal bulging with the plastic injection. The deformation of the AA1100-O sheet was investigated during the injection of the polypropylene–olefin compound. The comparison of the theoretical and experimental results shows that the general approach formulated here can be successfully applied to predict the surface strains and thickness distributions with maximum error of 6% while the deformed geometry remains within ±0.35 mm deviation in the final deformation stage.

References

References
1.
Thiruvarudchelvan
,
S.
,
2002
, “
The Potential Role of Flexible Tools in Metal Forming
,”
J. Mater. Process. Technol.
,
122
(
2–3
), pp.
293
300
.
2.
Iorio
,
L.
,
Pagani
,
L.
,
Strano
,
M.
, and
Monno
,
M.
,
2016
, “
Design of Deformable Tools for Sheet Metal Forming
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
094701
.
3.
Djurdjanovic
,
D.
,
Mears
,
L.
,
Niaki
,
F. A.
,
Haq
,
A. U.
, and
Li
,
L.
,
2017
, “
State of the Art Review on Process, System, and Operations Control in Modern Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(6), p. 061010.
4.
Jia
,
Z.
,
Xu
,
Q.
,
Han
,
Z.
, and
Peng
,
W.
,
2016
, “
Precision Forming of the Straight Edge of Square Section by Die-Less Spinning
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
011006
.
5.
Noh
,
T.
, and
Yang
,
D.
,
1998
, “
A General Formulation for Hydroforming of Arbitrarily-Shaped Boxes and Its Application to Hydroforming of an Elliptic-Circular Box
,”
ASME J. Manuf. Sci. Eng.
,
120
(
3
), pp.
481
488
.
6.
Türköz
,
M.
,
Halkacı
,
H. S.
,
Halkacı
,
M.
,
Dilmeç
,
M.
,
Avcı
,
S.
, and
Koç
,
M.
,
2016
, “
Design, Fabrication, and Experimental Validation of a Warm Hydroforming Test System
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
045001
.
7.
Weddeling
,
C.
,
Gies
,
S.
,
Khalifa
,
N. B.
, and
Tekkaya
,
A. E.
,
2015
, “
Analytical Model to Determine the Strength of Form-Fit Connection Joined by Die-Less Hydroforming
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051014
.
8.
Singh
,
H.
,
2003
,
Fundamentals of Hydroforming
,
Society of Manufacturing Engineers
, Dearborn, MI.
9.
Labergere
,
C.
, and
Gelin
,
J.-C.
,
2012
, “
Numerical Simulation of Sheet Hydroforming Taking Into Account Analytical Pressure and Fluid Flow
,”
J. Mater. Process. Technol.
,
212
(
10
), pp.
2020
2030
.
10.
Wang
,
Z.
,
Liu
,
J.
,
Wang
,
X.
,
Hu
,
Z.
, and
Guo
,
B.
,
2004
, “
Viscous Pressure Forming (VPF): State-of-the-Art and Future Trends
,”
J. Mater. Process. Technol.
,
151
(
1–3
), pp.
80
87
.
11.
Wang
,
Z.-J.
,
Wang
,
P.-Y.
, and
Song
,
H.
,
2014
, “
Research on Sheet-Metal Flexible-Die Forming Using a Magnetorheological Fluid
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2200
2211
.
12.
Tekkaya
,
A.
,
Hussain
,
M.
, and
Witulski
,
J.
,
2012
, “
The Non-Hydrostatic Response of Polymer Melts as a Pressure Medium in Sheet Metal Forming
,”
Prod. Eng.
,
6
(
4–5
), pp.
385
394
.
13.
Van Der Aa
,
H. C. E.
,
Verdier
,
A.
, and
De Wolf
,
H. G.
,
2003
, “
Method and Device for Producing a Composite Product, and Composite Product Produced Therewith
,” U.S. Patent No. 10/500,706.
14.
Baesso
,
R.
,
2008
, “
Numerical and Experimental Investigation of the Polymer Injection Forming Process
,” Ph.D. thesis, University of Padova, Padova, Italy.
15.
Hussain
,
M. M.
,
Rauscher
,
B.
,
Trompeter
,
M.
, and
Tekkaya
,
A. E.
,
2009
, “
Potential of Melted Polymer as Pressure Medium in Sheet Metal Forming
,”
Key Eng. Mater.
,
410–411
, pp.
493
501
.
16.
Landgrebe
,
D.
,
Kräusel
,
V.
,
Rautenstrauch
,
A.
,
Albert
,
A.
, and
Wertheim
,
R.
,
2016
, “
Energy-Efficiency in a Hybrid Process of Sheet Metal Forming and Polymer Injection Moulding
,”
Procedia CIRP
,
40
, pp.
109
114
.
17.
Razzaq
,
M.
,
2011
, “
Finite Element Simulation Techniques for Incompressible Fluid Structure Interaction With Applications to Bioengineering and Optimization
,”
Doctoral dissertation
, University of Dortmund, Dotrmund, Germany.
18.
Crandall
,
S.
,
Vigander
,
S.
, and
March
,
P.
,
1975
, “
Destructive Vibration of Trashracks Due to Fluid-Structure Interaction
,”
J. Eng. Ind.
,
97
(
4
), pp.
1359
1365
.
19.
Chen
,
M.
,
Zhang
,
X.
,
Lei
,
Q.
, and
Fu
,
J.
,
2002
, “
Finite Element Analysis of Forming of Sheet Metal Blank in Manufacturing Metal/Polymer Macro-Composite Components Via Injection Moulding
,”
Int. J. Mach. Tools Manuf.
,
42
(
3
), pp.
375
383
.
20.
Hussain
,
M. M.
,
Trompeter
,
M.
,
Witulski
,
J.
, and
Tekkaya
,
A. E.
,
2012
, “
An Experimental and Numerical Investigation on Polymer Melt Injected Sheet Metal Forming
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
031005
.
21.
Parng
,
S.
, and
Yang
,
S.
,
2001
, “
Fracture Types and Thickness Distribution in Superplastic Sheets Formed With Plastic Injection Molding
,”
Mater. Manuf. Processes
,
16
(
4
), pp.
503
518
.
22.
Kennedy
,
P.
, and
Zheng
,
R.
,
2013
,
Flow Analysis of Injection Molds
,
Carl Hanser Verlag GmbH & Co. KG
, Munich, Germany.
23.
Osswald
,
T.
, and
Hernández-Ortiz
,
J. P.
,
2006
,
Polymer Processing: Modeling and Simulation
,
Hanser
,
Munich, Germany
.
24.
Hu
,
J.
,
Marciniak
,
Z.
, and
Duncan
,
J.
,
2002
,
Mechanics of Sheet Metal Forming
,
Elsevier
, Oxford, UK.
25.
Hill
,
R.
,
1950
, “
C. A Theory of the Plastic Bulging of a Metal Diaphragm by Lateral Pressure
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
41
(
322
), pp.
1133
1142
.
26.
Budiansky
,
B.
, and
Wang
,
N.
,
1966
, “
On the Swift Cup Test
,”
J. Mech. Phys. Solids
,
14
(
6
), pp.
357
374
.
27.
Wang
,
N.
, and
Shammamy
,
M.
,
1969
, “
On the Plastic Bulging of a Circular Diaphragm by Hydrostatic Pressure
,”
J. Mech. Phys. Solids
,
17
(
1
), pp.
43
61
.
You do not currently have access to this content.