Research on materials, design, processing, and manufacturability of parts produced by additive manufacturing (AM) has been investigated significantly in the past. However, limited research on tensile behavior of cellular lattice structures by AM was carried out. In this paper, effective tensile Young's modulus, E*, of triangular lattice structures was determined. Firstly, analytical solution was derived based on Euler–Bernoulli beam theory. Then, numerical results of E* were obtained by finite element analysis (FEA) for triangular lattice structures classified by three shape parameters. The effects of side length, L, beam thickness, t, and height, h, on E* were investigated individually. FEA results revealed that there is a relationship between E* and the relative density and shape parameters. Among them, t has the most significant effect on E*. Numerical results were also compared with the results from modified general function for cellular structures and modified formula for triangular honeycomb. The E* predicted by the proposed analytical solution shows the best agreement with the numerical results. Finally, tensile tests were carried out using AlSi10 Mg triangular lattice structures manufactured by selective laser melting (SLM) process. The experimental results show that both analytical and numerical solutions are able to predict E* with good accuracy. In the future, the proposed solution can be used to design lightweight structures with triangular unit cells.

References

References
1.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
2.
Wong
,
K. V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
,
2012
, p. 208760.
3.
Williams
,
C. B.
,
Cochran
,
J. K.
, and
Rosen
,
D. W.
,
2011
, “
Additive Manufacturing of Metallic Cellular Materials Via Three-Dimensional Printing
,”
Int. J. Adv. Manuf. Technol.
,
53
(
1–4
), pp.
231
239
.
4.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
,
Young
,
P.
,
Huang
,
J.
, and
Zhu
,
W.
,
2015
, “
Microstructure and Mechanical Properties of Aluminium Alloy Cellular Lattice Structures Manufactured by Direct Metal Laser Sintering
,”
Mater. Sci. Eng. A
,
628
, pp.
238
246
.
5.
Beyer
,
C.
, and
Figueroa
,
D.
,
2016
, “
Design and Analysis of Lattice Structures for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121014
.
6.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci
,
46
(
3–4
), pp.
309
327
.
7.
Fang
,
Z.
,
Starly
,
B.
, and
Sun
,
W.
,
2005
, “
Computer-Aided Characterization for Effective Mechanical Properties of Porous Tissue Scaffolds
,”
Comput. Des.
,
37
(
1
), pp.
65
72
.
8.
Wang
,
H.
,
Chen
,
Y.
, and
Rosen
,
D. W.
,
2005
, “
A Hybrid Geometric Modeling Method for Large Scale Conformal Cellular Structures
,”
ASME
Paper No. DETC2005-85366.
9.
Reinhart
,
G.
, and
Teufelhart
,
S.
,
2011
, “
Load-Adapted Design of Generative Manufactured Lattice Structures
,”
Phys. Procedia
,
12
(Pt. A), pp.
385
392
.
10.
Parthasarathy
,
J.
,
Starly
,
B.
, and
Raman
,
S.
,
2011
, “
A Design for the Additive Manufacture of Functionally Graded Porous Structures With Tailored Mechanical Properties for Biomedical Applications
,”
J. Manuf. Process
,
13
(
2
), pp.
160
170
.
11.
Nguyen
,
J.
,
Park
,
S.
, and
Rosen
,
D.
,
2013
, “
Heuristic Optimization Method for Cellular Structure Design of Light Weight Components
,”
Int. J. Precis. Eng. Manuf.
,
14
(
6
), pp.
1071
1078
.
12.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
,
Bubb
,
S. L.
,
Young
,
P.
, and
Raymont
,
D.
,
2014
, “
Evaluation of Light-Weight AlSi10 Mg Periodic Cellular Lattice Structures Fabricated Via Direct Metal Laser Sintering
,”
J. Mater. Process. Technol.
,
214
(
4
), pp.
856
864
.
13.
Hao
,
L.
,
Raymont
,
D.
,
Yan
,
C.
,
Hussein
,
A.
, and
Young
,
P.
,
2011
, “
Design and Additive Manufacturing of Cellular Lattice Structures
,”
Innovative Developments in Virtual and Physical Prototyping: Fifth International Conference on Advanced Research in Virtual and Rapid Prototyping
(
VRAP
), Leiria, Portugal, Sept. 28–Oct. 1, pp.
249
254
.https://www.researchgate.net/publication/264955236_Design_and_additive_manufacturing_of_cellular_lattice_structures
14.
Wang
,
D.
,
Yang
,
Y.
,
Liu
,
R.
,
Xiao
,
D.
, and
Sun
,
J.
,
2013
, “
Study on the Designing Rules and Processability of Porous Structure Based on Selective Laser Melting (SLM)
,”
J. Mater. Process. Technol.
,
213
(
10
), pp.
1734
1742
.
15.
Li
,
P.
,
2015
, “
Constitutive and Failure Behaviour in Selective Laser Melted Stainless Steel for Microlattice Structures
,”
Mater. Sci. Eng. A
,
622
, pp.
114
120
.
16.
Brenne
,
F.
,
Niendorf
,
T.
, and
Maier
,
H. J.
,
2013
, “
Additively Manufactured Cellular Structures: Impact of Microstructure and Local Strains on the Monotonic and Cyclic Behavior Under Uniaxial and Bending Load
,”
J. Mater. Process. Technol.
,
213
(
9
), pp.
1558
1564
.
17.
Ju
,
J.
, and
Summers
,
J. D.
,
2011
, “
Compliant Hexagonal Periodic Lattice Structures Having Both High Shear Strength and High Shear Strain
,”
Mater. Des.
,
32
(
2
), pp.
512
524
.
18.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Raymont
,
D.
,
2012
, “
Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
32
38
.
19.
Niu
,
J.
,
Choo
,
H. L.
, and
Sun
,
W.
,
2017
, “
Finite Element Analysis and Experimental Study of Plastic Lattice Structures Manufactured by Selective Laser Sintering
,”
Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.
,
231
(
1–2
), pp.
171
178
.
20.
Ashby
,
M. F.
, and
Medalist
,
R. F. M.
,
1983
, “
The Mechanical Properties of Cellular Solids
,”
Metall. Trans. A
,
14
(
9
), pp.
1755
1769
.
21.
Smith
,
M.
,
Guan
,
Z.
, and
Cantwell
,
W. J.
,
2013
, “
Finite Element Modelling of the Compressive Response of Lattice Structures Manufactured Using the Selective Laser Melting Technique
,”
Int. J. Mech. Sci.
,
67
, pp.
28
41
.
22.
Onck
,
P. R.
,
Andrews
,
E. W.
, and
Gibson
,
L. J.
,
2001
, “
Size Effects in Ductile Cellular Solids—Part I: Modeling
,”
Int. J. Mech. Sci
,
43
(
3
), pp.
681
699
.
23.
Ahmadi
,
S. M.
,
Campoli
,
G.
,
Amin Yavari
,
S.
,
Sajadi
,
B.
,
Wauthle
,
R.
,
Schrooten
,
J.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2014
, “
Mechanical Behavior of Regular Open-Cell Porous Biomaterials Made of Diamond Lattice Unit Cells
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
106
115
.
24.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
25.
Yu
,
J. L.
,
Li
,
J. R.
, and
Hu
,
S. S.
,
2006
, “
Strain-Rate Effect and Micro-Structural Optimization of Cellular Metals
,”
Mech. Mater.
,
38
(
1–2
), pp.
160
170
.
26.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1982
, “
The Mechanics of Three-Dimensional Cellular Materials
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
382
(
1782
), pp.
43
59
.
27.
Hunt
,
H. E. M.
,
1993
, “
The Mechanical Strength of Ceramic Honeycomb Monoliths as Determined by Simple Experiments
,”
Chem. Eng. Res. Des.
,
71
(
3
), pp.
257
266
.
28.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solids
,
49
(
8
), pp.
1747
1769
.
29.
Mohr
,
D.
,
2005
, “
Mechanism-Based Multi-Surface Plasticity Model for Ideal Truss Lattice Materials
,”
Int. J. Solids Struct.
,
42
(
11–12
), pp.
3235
3260
.
30.
Wang
,
A.
, and
McDowell
,
D. L.
,
2005
, “
Yield Surfaces of Various Periodic Metal Honeycombs at Intermediate Relative Density
,”
Int. J. Plast.
,
21
(
2
), pp.
285
320
.
31.
Ushijima
,
K.
,
Cantwell
,
W.
,
Mines
,
R.
,
Tsopanos
,
S.
, and
Smith
,
M.
,
2011
, “
An Investigation Into the Compressive Properties of Stainless Steel Micro-Lattice Structures
,”
J. Sandw. Struct. Mater.
,
13
(
3
), pp.
303
329
.
32.
Yang
,
L.
,
Harrysson
,
O.
,
Cormier
,
D.
,
West
,
H.
,
Gong
,
H.
, and
Stucker
,
B.
,
2015
, “
Additive Manufacturing of Metal Cellular Structures: Design and Fabrication
,”
JOM
,
67
(
3
), pp.
608
615
.
33.
Park
,
S.-I.
,
Rosen
,
D. W.
,
Choi
,
S.
, and
Duty
,
C. E.
,
2014
, “
Effective Mechanical Properties of Lattice Material Fabricated by Material Extrusion Additive Manufacturing
,”
Addit. Manuf.
,
1–4
, pp.
12
23
.
34.
Niu
,
J.
,
Choo
,
H. L.
,
Sun
,
W.
, and
Mok
,
S. H.
,
2017
, “
Numerical Study on Load-Bearing Capabilities of Beam-like Lattice Structures With Three Different Unit Cells
,”
Int. J. Mech. Mater. Des.
(epub).
35.
Ranjan
,
R.
,
Samant
,
R.
, and
Anand
,
S.
,
2017
, “
Integration of Design for Manufacturing Methods With Topology Optimization in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p. 0
61007
.
36.
Harper
,
L. T.
,
Ahmed
,
I.
,
Felfel
,
R. M.
, and
Qian
,
C.
,
2012
, “
Finite Element Modelling of the Flexural Performance of Resorbable Phosphate Glass Fibre Reinforced PLA Composite Bone Plates
,”
J. Mech. Behav. Biomed. Mater.
,
15
, pp.
13
23
.
37.
Beer
,
F. P.
,
Johnston
,
E. R.
, Jr.
, and
DeWolf
,
J. T.
,
2005
,
Mechanics of Materials
,
McGraw-Hill Higher Education
,
NY
.
38.
Wang
,
C. M.
,
1995
, “
Timoshenko Beam-Bending Solutions in Terms of Euler-Bernoulli Solutions
,”
J. Eng. Mech.
,
121
(
6
), pp.
763
765
.
39.
Olivares
,
A. L.
,
Marsal
,
È.
,
Planell
,
J. A.
, and
Lacroix
,
D.
,
2009
, “
Finite Element Study of Scaffold Architecture Design and Culture Conditions for Tissue Engineering
,”
Biomaterials
,
30
(
30
), pp.
6142
6149
.
40.
Lee
,
H. H.
,
2012
,
Finite Element Simulations With ANSYS Workbench 14
,
SDC Publications
, Mission, KS.
41.
Brandl
,
E.
,
Heckenberger
,
U.
,
Holzinger
,
V.
, and
Buchbinder
,
D.
,
2012
, “
Additive Manufactured AlSi10 Mg Samples Using Selective Laser Melting (SLM): Microstructure, High Cycle Fatigue, and Fracture Behavior
,”
Mater. Des.
,
34
, pp.
159
169
.
42.
Maskery
,
I.
,
Aboulkhair
,
N. T.
,
Corfield
,
M. R.
,
Tuck
,
C.
,
Clare
,
A. T.
,
Leach
,
R. K.
,
Wildman
,
R. D.
,
Ashcroft
,
I. A.
, and
Hague
,
R. J. M.
,
2016
, “
Quantification and Characterisation of Porosity in Selectively Laser Melted Al–Si10–Mg Using X-Ray Computed Tomography
,”
Mater. Charact.
,
111
, pp.
193
204
.
43.
Kempen
,
K.
,
Thijs
,
L.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2012
, “
Mechanical Properties of AlSi10 Mg Produced by Selective Laser Melting
,”
Phys. Procedia
,
39
, pp.
439
446
.
44.
SLM Solutions Group AG
,
2016
, “
SLM Metal Powder
,” SLM Solutions Group AG, accessed June 11, 2018, https://slm-solutions.com/products/accessories-and-consumables/slmr-metal-powder
45.
Aboutaleb
,
A. M.
,
Tschopp
,
M. A.
,
Rao
,
P. K.
, and
Bian
,
L.
,
2017
, “
Multi-Objective Accelerated Process Optimization of Part Geometric Accuracy in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101001
.
46.
Alsalla
,
H.
,
Hao
,
L.
, and
Smith
,
C.
,
2016
, “
Fracture Toughness and Tensile Strength of 316 L Stainless Steel Cellular Lattice Structures Manufactured Using the Selective Laser Melting Technique
,”
Mater. Sci. Eng. A
,
669
, pp.
1
6
.
You do not currently have access to this content.