The accurate calculation of deformation during assembly process is important for deviation propagation of large-scale thin-walled hemisphere structures with manufacturing deviations due to the nonuniformed material properties and nonlinear geometrical behavior. In this study, a new irregular quadrilateral plate element based on the absolute nodal coordinate formulation (ANCF) is proposed to discretize the scalloped segment plates with shape deviations. The high-order shape functions of the new element are developed by considering the variable geometrical boundaries. The generalized elastic forces (GEFS) of the new elements for anisotropic and orthotropic materials are derived based on continuum mechanics approach. The bending deviation mode is defined and the evaluation indexes for assembly quality of thin-walled hemisphere structures are proposed. The force equilibrium equations are employed to study the deformation during assembly process for large-scale thin-walled hemisphere structures with multiple scalloped segment plates. The numerical results are compared with that from experimental data and abaqus. The correlation between the assembly quality and the bending deviation, the clamping methods, the geometrical parameters, and the material properties of structures is also investigated.

References

References
1.
Merkley
,
K. G.
,
1998
, “
Tolerance Analysis of Compliant Assemblies
,”
Ph.D. thesis
,
Brigham Young University
, Provo, UT.http://adcats.et.byu.edu/Publication/98-1/Merkley_Phd.pdf
2.
Bihlmaier
,
B. F.
,
1999
, “
Tolerance Analysis of Flexible Assemblies Using Finite Element and Spectral Analysis
,”
MS thesis
, Brigham Young University, Provo, UT.http://adcats.et.byu.edu/Publication/99-1/BihlmaierThesis.pdf
3.
Tonks
,
M.
,
2002
, “
A Robust Geometric Covariance Method for Flexible Assembly Tolerance Analysis
,” Brigham Young University, Provo, UT.
4.
Huang
,
W.
, and
Ceglarek
,
D.
,
2002
, “
Decomposition Mode-Based Off Share Form Error by Discrete-Cosine-Transform With Implementation to Assembly and Stamping System With Compliant Shares
,”
Ann. CIRP
,
51
(
1
), pp.
21
26
.
5.
Samper
,
S.
, and
Formosa
,
F.
,
2007
, “
Form Defects Tolerancing by Natural Modes Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(
1
), pp.
44
51
.
6.
Samper
,
S.
,
Adragna
,
P. A.
,
Favreliere
,
H.
, and
Pillet, M.
,
2009
, “
Modeling of 2D and 3D Assemblies Taking Into Account Form Errors of Plane Surfaces
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), p.
041005
.
7.
Shiu
,
B. W.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
1997
, “
Flexible Beam-Based Modeling of Sheet Metal Assembly for Dimensional Control
,”
Trans.-North Am. Manuf. Res. Inst.
,
25
(4), pp.
49
54
.
8.
Wang
,
H.
, and
Ceglarek
,
D.
,
2009
, “
Variation Propagation Modeling and Analysis at Preliminary Design Phase of Multi-Station Assembly Systems
,”
Assem. Autom.
,
29
(
2
), pp.
154
166
.
9.
Liu
,
S. C.
,
Hu
,
S. J.
, and
Woo
,
T. C.
,
1996
, “
Tolerance Analysis for Sheet Metal Assemblies
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
62
67
.
10.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
11.
Camelio
,
J. A.
, and
Hu
,
S. J.
,
2002
, “
Compliant Assembly Variation Analysis Using Components Geometric Covariance
,”
ASME J. Manuf. Sci. Eng.
,
126
(2), pp. 355–360.
12.
Dong
,
C. S.
, and
Kang
,
L.
,
2011
, “
Assembly Deformation and Stresses of Compliant Structures
,”
Advanced Mater. Res.
,
275
, pp.
69
72
.
13.
Mei
,
B.
,
Zhu
,
W.
,
Zheng
,
P.
, and
Ke, y.
,
2018
, “
Variation Modeling and Analysis With Interval Approach for the Assembly of Compliant Aeronautical Structures
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
(epub).
14.
Cai
,
N.
,
Qiao
,
L.
, and
Anwer
,
N.
,
2015
, “
Unified Variation Modeling of Sheet Metal Assembly Considering Rigid and Compliant Variations
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manu-Facture
,
229
(
3
), pp.
495
507
.
15.
Yue
,
X.
,
Wen
,
Y.
, and
Wen
,
Y.
,
2018
, “
Surrogate Model-Based Control Considering Uncertainties for Composite Fuselage Assembly
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041017
.
16.
Zhang
,
T.
, and
Shi
,
J.
,
2016
, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly—Part I: Single-Station Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121003
.
17.
Zhang
,
T.
, and
Shi
,
J.
,
2016
, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly—Part II: Multistation Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121004
.
18.
Liao
,
X.
, and
Wang
,
G. G.
,
2007
, “
Non-Linear Dimensional Variation Analysis for Sheet Metal Assemblies by Contact Modeling
,”
Finite Elem. Anal. Des.
,
44
(
1–2
), pp.
34
44
.
19.
Xie
,
K.
,
Wells
,
L.
,
Camelio
,
J. A.
, and
Youn, B. D.
,
2007
, “
Variation Propagation Analysis on Compliant Assemblies Considering Contact Interaction
,”
ASME J. Manuf. Sci. Eng.
,
129
(
5
), pp.
934
942
.
20.
Ungemach
,
G.
, and
Mantwill
,
F.
,
2009
, “
Efficient Consideration of Contact in Compliant Assembly Variation Analysis
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011005
.
21.
Hashemian
,
S. A.
, and
Moetakef
,
I. B.
,
2014
, “
Nonlinear Variation Analysis of Compliant Sheet Metal Assemblies Including Effect of Surface Continuity in Components
,”
Appl. Mech. Mater.
,
532
, pp.
503
509
.
22.
Li
,
B.
,
Yu
,
H.
,
Yang
,
X.
, and
Hu, Y.
,
2010
, “
Variation Analysis and Robust Fixture Design of a Flexible Fixturing System for Sheet Metal Assembly
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), p.
041014
.
23.
Lorin
,
S.
,
Cromvik
,
C.
,
Edelvik
,
F.
,
Lindkvist, L.
, and
Söderberg, R.
,
2014
, “
Variation Simulation of Welded Assemblies Using a Thermo-Elastic Finite Element Model
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
3
), p.
031003
.
24.
Han
,
S. L.
,
Zeng
,
Q. L.
,
Lin
,
C.
,
Gao, Y.
, and
Jia, Y. F.
,
2014
, “
Variation Analysis of Auto-Body Aluminum Alloy Sheet Metal Assembly in Self-Pierce Riveting
,”
Int. J. Adv. Manuf. Technol.
,
70
(
1–4
), pp.
701
709
.
25.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
189
222
.
26.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
.
27.
Mikkola
,
A. M.
, and
Shabana
,
A. A.
,
2003
, “
A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications
,”
Multibody Syst. Dyn.
,
9
(
3
), pp.
283
309
.
28.
Zhao
,
C.
,
Yu
,
H.
,
Lin
,
Z.
, and
Zhao, Y.
,
2015
, “
Dynamic Model and Behavior of Viscoelastic Beam Based on the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K: J. Multibody Dyn.
,
229
(
1
), pp.
84
96
.
29.
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2003
, “
Use of Plasticity Theory in Flexible Multibody System Dynamics
,”
ASME
Paper No. DETC2003/VIB-48326.
30.
Maqueda
,
L. G.
,
Mohamed
,
A. N. A.
, and
Shabana
,
A. A.
,
2010
, “
Use of General Nonlinear Material Models in Beam Problems: Application to Belts and Rubber Chains
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
2
), p.
021003
.
31.
Langerholc
,
M.
,
Slavič
,
J.
, and
Boltežar
,
M.
,
2013
, “
A Thick Anisotropic Plate Element in the Framework of an Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
183
198
.
32.
Shabana
,
A. A.
, and
Christensen
,
A. P.
,
1997
, “
Three-Dimensional Absolute Nodal Coordinate Formulation: Plate Problem
,”
Int. J. Numer. Methods Eng.
,
40
(
15
), pp.
2775
2790
.
33.
Dufva
,
K.
, and
Shabana
,
A. A.
,
2005
, “
Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
219
(
4
), pp.
345
355
.
34.
Abbas
,
L. K.
,
Rui
,
X.
, and
Hammoudi
,
Z. S.
,
2010
, “
Plate/Shell Element of Variable Thickness Based on the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
224
(
2
), pp.
127
141
.
35.
Olshevskiy
,
A.
,
Dmitrochenko
,
O.
, and
Kim
,
C.
,
2013
, “
Three- and Four-Noded Planar Elements Using Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
29
(
3
), pp.
255
269
.
36.
Mohamed
,
A. N. A.
,
2013
, “
Three-Dimensional Fully Parameterized Triangular Plate Element Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041016
.
37.
Yan
,
D.
,
Liu
,
C.
,
Tian
,
Q.
,
Zhang, K.
,
Liu, X. N.
, and
Hu, G. K.
,
2013
, “
A New Curved Gradient Deficient Shell Element of Absolute Nodal Coordinate Formulation for Modeling Thin Shell Structures
,”
Nonlinear Dyn.
,
74
(
1–2
), pp.
153
164
.
38.
Nada
,
A. A.
,
2013
, “
Use of B-Spline Surface to Model Large-Deformation Continuum Plates: Procedure and Applications
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
243
263
.
You do not currently have access to this content.