A double pulse low-frequency modulation method was proposed to improve heat input control and enhance weld quality during high-power double-wire pulsed gas metal arc welding (GMAW). By constructing a mathematical model, relationships between parameters of double pulse low-frequency modulation and energy input were analyzed. A correction coefficient was added to overcome physical characteristics of charging and discharging in a welding circuit. Thus, qualitative relationships between parameters of double pulse low-frequency modulation and energy input were described more accurately. Bead-on-plate welding experiments were conducted in a synchronous phase mode. A stable welding process was achieved and perfect weld bead shapes were acquired. Modulation frequency imposed a significant effect on both weld width and penetration, while modulation duty cycle had a significant effect on penetration and little effect on weld width. Modulation frequency significantly influenced refinement of grain size. Weak and strong pulses of low-frequency modulation improved heat input control, strengthened stirring action of double pulse on weld pool, and enhanced fluidity of molten metals, thereby contributing to optimization of weld quality.

References

References
1.
Michie
,
K.
,
Blackman
,
S.
, and
Ogunbiyi
,
T. E. B.
,
1999
, “
Twin-Wire GMAW: Process Characteristics and Applications
,”
Weld. J.
,
78
(
5
), pp.
31-s
34-s
.
2.
Zhang
,
Y. M.
,
Jiang
,
M.
, and
Lu
,
W.
,
2004
, “
Double Electrodes Improve GMAW Heat Input Control
,”
Weld. J.
,
83
(
11
), pp.
39-s
41-s
.
3.
Lu
,
Y.
,
Chen
,
S. J.
,
Shi
,
Y.
,
Li
,
X. R.
,
Chen
,
J. S.
,
Kvidahl
,
L.
, and
Zhang
,
Y. M.
,
2014
, “
Double-Electrode Arc Welding Process: Principle, Variants, Control and Developments
,”
J. Manuf. Process
,
16
(
1
), pp.
93
108
.
4.
Zhu
,
M.
,
Shi
,
Y.
, and
Fan
,
D.
,
2015
, “
Analysis and Improvement of Metal Transfer Behaviors in Consumable Double-Electrode GMAW Process
,”
ASME J. Manuf. Sci. Eng
,
137
(
1
), p.
011010
.
5.
Shi
,
C. W.
,
Zou
,
Y.
,
Zou
,
Z. D.
, and
Wu
,
D. T.
,
2014
, “
Twin-Wire Indirect Arc Welding by Modeling and Experiment
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2292
2299
.
6.
Reis
,
R. P.
,
Souza
,
D.
, and
Filho
,
D. F.
,
2015
, “
Arc Interruptions in Tandem Pulsed Gas Metal Arc Welding
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011004
.
7.
Moinuddin
,
S. Q.
, and
Sharma
,
A.
,
2015
, “
Arc Stability and Its Impact on Weld Properties and Microstructure in Anti-Phase Synchronised Synergic-Pulsed Twin-Wire Gas Metal Arc Welding
,”
Mater. Des.
,
67
(
2
), pp.
293
302
.
8.
Scotti
,
A.
,
Morais
,
C. O.
, and
Vilarinho
,
L. O.
,
2006
, “
The Effect of out-of-Phase Pulsing on Metal Transfer in Twin-Wire GMA Welding at High Current Level
,”
Weld. J.
,
85
(
10
), pp.
225-s
230-s
.https://app.aws.org/wj/supplement/WJ_2006_10_s225.pdf
9.
Fang
,
C. F.
,
Meng
,
X. H.
,
Hu
,
Q. X.
,
Wang
,
F. J.
,
Ren
,
H.
,
Wang
,
H. S.
,
Guo
,
Y.
, and
Mao
,
M.
,
2012
, “
TANDEM and GMAW Twin Wire Welding of Q690 Steel Used in Hydraulic Support
,”
J. Iron Steel Res. Int.
,
19
(
5
), pp.
79
85
.
10.
Zhao
,
Y. Y.
, and
Chung
,
H.
,
2018
, “
Influence of Power Source Dynamics on Metal and Heat Transfer Behaviors in Pulsed Gas Metal Arc Welding
,”
Int. J. Heat Mass Transfer
,
121
(
6
), pp.
887
899
.
11.
Yamamoto
,
H.
,
Harada
,
S.
,
Ueyama
,
T.
, and
Ogawa
,
S.
,
1993
, “
Study of Low-Frequency Pulsed MIG Welding
,”
Weld. Int.
,
7
(
1
), pp.
21
26
.
12.
Silva
,
C. L. M.
, and
Scotti
,
A.
,
2004
, “
Performance Assessment of the (Trans) Varestraint Tests for Determining Solidification Cracking Susceptibility When Using Welding Processes With Filler Metal
,”
Meas. Sci. Technol.
,
15
(
11
), pp.
2215
2223
.
13.
Liu
,
A. H.
,
Tang
,
X. H.
, and
Lu
,
F. G.
,
2013
, “
Study on Welding Process and Prosperities of AA5754 Al-Alloy Welded by Double Pulsed Gas Metal Arc Welding
,”
Mater. Des.
,
50
(
17
), pp.
149
155
.
14.
Silva
,
C. L. M.
, and
Scotti
,
A.
,
2006
, “
The Influence of Double Pulse on Porosity Formation in Aluminum GMAW
,”
J. Mater. Process. Technol.
,
171
(
3
), pp.
366
372
.
15.
Mathivanan
,
A.
,
Devakumaran
,
K.
, and
Senthilkumar
,
A.
,
2014
, “
Comparative Study on Mechanical and Metallurgical Properties of AA6061 Aluminum Alloy Sheet Weld by Pulsed Current and Dual Pulse Gas Metal Arc Welding Processes
,”
Mater. Manuf. Process
,
29
(
8
), pp.
941
947
.
16.
Yi
,
J.
,
Cao
,
S. F.
,
Li
,
L. X.
,
Guo
,
P. C.
, and
Liu
,
K. Y.
,
2015
, “
Effect of Welding Current on Morphology and Microstructure of Al Alloy TJoint in Double-Pulsed MIG Welding
,”
Trans. Nonferr. Met. Soc.
,
25
(
10
), pp.
3204
3211
.
17.
Zhang
,
H.
,
Hu
,
S. S.
,
Shen
,
J. Q.
,
Ma
,
L.
, and
Yin
,
F. L.
,
2015
, “
Microstructures and Mechanical Properties of 30Cr-4Mo Ferritic Stainless Steel Joints Produced by Double-Pulsed Gas Metal Arc Welding”, Int
,”
J. Adv. Manuf. Technol
,
80
(
9–12
), pp.
1975
1983
.
18.
Sen
,
M.
,
Mukherjee
,
M.
, and
Pal
,
T. K.
,
2015
, “
Evaluation of Correlations Between DP-GMAW Process Parameters and Bead Geometry
,”
Weld. J.
,
94
(
8
), pp.
265-s
279-s
.https://app.aws.org/wj/supplement/WJ_2015_08_s265.pdf
19.
Sen
,
M.
,
Mukherjee
,
M.
, and
Pal
,
T. K.
,
2018
, “
Effect of Double-Pulsed Gas Metal Arc Welding (DP-GMAW) Process Variables on Microstructural Constituents and Hardness of Low Carbon Steel Weld Deposits
,”
J. Manuf. Process
,
31
, pp.
424
439
.
20.
Wang
,
L. L.
,
Wei
,
H. L.
,
Xue
,
J. X.
, and
DebRoyb
,
T.
,
2018
, “
Special Features of Double Pulsed Gas Metal Arc Welding
,”
J. Mater. Process. Technol.
,
251
(
1
), pp.
369
375
.
21.
Chen
,
M. A.
,
Wu
,
C. S.
,
Li
,
S. K.
, and
Zhang
,
Y. M.
,
2007
, “
Analysis of Active Control of Metal Transfer in Modified Pulsed GMAW
,”
Sci. Technol. Weld. Joining
,
12
(
1
), pp.
10
14
.
22.
Kah
,
P.
,
Suoranta
,
R.
, and
Martikainen
,
J.
,
2013
, “
Advanced Gas Metal Arc Welding Processes
,”
Int. J. Adv. Manuf. Technol
,
67
(
1–4
), pp.
655
674
.
23.
Vilarinho
,
L. O.
,
Nascimento
,
A. S.
,
Fernandes
,
D. B.
, and
Mota
,
C. A. M.
,
2009
, “
Methodology for Parameter Calculation of VP-GMAW
,”
Weld. J.
,
88
(
4
), pp.
92-s
98-s
.https://app.aws.org/wj/supplement/WJ_2009_04_s92.pdf
24.
Arif
,
N.
, and
Chung
,
H.
,
2015
, “
Alternating Current-Gas Metal Arc Welding for Application to Thick Plates
,”
J. Mater. Process. Technol.
,
222
(
8
), pp.
75
83
.
25.
Mvola
,
B.
,
Kah
,
P.
, and
Layus
,
P.
,
2018
, “
Review of Current Waveform Control Effects on Weld Geometry in Gas Metal Arc Welding Process
,”
Int. J. Adv. Manuf. Technol.
,
96
(9–12), pp. 4243–4265.
26.
Wang
,
Y.
,
Wang
,
L. J.
, and
Lv
,
X. Q.
,
2016
, “
Simulation of Dynamic Behavior and Prediction of Optimal Welding Current for Short-Circuiting Transfer Mode in GMAW
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061011
.
27.
Yang
,
M. X.
,
Zheng
,
H.
,
Qi
,
B. J.
, and
Yang
,
Z.
,
2017
, “
Microstructure and Fatigue Property of Ti–6Al–4V by Ultrahigh Frequency Pulse Welding
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041015
.
28.
Richardson
,
I. M.
,
Bucknall
,
P. W.
, and
Stares
,
I.
,
1994
, “
The Influence of Power Source Dynamics on Wire Melting Rate in Pulsed GMA Welding
,”
Weld. J.
,
73
(
2
), pp.
32-s
37-s
.http://files.aws.org/wj/supplement/WJ_1994_02_s32.pdf
29.
Palani
,
P. K.
,
Murugan
,
N.
,
2006
, “
Selection of Parameters of Pulsed Current Gas Metal Arc Welding
,”
J. Mater. Process. Technol.
,
172
(
1
), pp.
1
10
.
You do not currently have access to this content.