Slicing of Si wafers through abrasive processes generates various surface defects on wafers such as cracks and surface contaminations. Also, the processes cause a significant material loss during slicing and subsequent polishing. Recently, efforts are being made to slice very thin wafers, and at the same time understand the thermal and microstructural damage caused due to sparking during wire-electrical discharge machining (wire-EDM). Wire-EDM has shown potential for slicing ultra-thin Si wafers of thickness < 200 μm. This work, therefore, presents an extensive experimental work on characterization of the thermal damage due to sparking during wire-EDM on ultra-thin wafers. The experiments were performed using Response surface methodology (RSM)-based central composite design (CCD). The damage was mainly characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The average thickness of thermal damage on the wafers was observed to be ∼16 μm. The damage was highly influenced by exposure time of wafer surface with EDM plasma spark. Also, with an increase in diameter of plasma spark, the surface roughness was found to increase. TEM micrographs have confirmed the formation of amorphous Si along with a region of fine grained Si entrapped inside the amorphous matrix. However, there were no signs of other defects like microcracks, twin boundaries, or fracture on the surfaces. Micro-Raman spectroscopy revealed that in order to slice a wafer with minimum residual stresses and very low presence of amorphous phases, it should be sliced at the lowest value of pulse on-time and at the highest value of open voltage (OV).

References

References
1.
Bismayer
,
U.
,
Brinksmeier
,
E.
,
Güttler
,
B.
,
Seibt
,
H.
, and
Menz
,
C.
,
1994
, “
Measurement of Subsurface Damage in Silicon Wafers
,”
Precis. Eng.
,
16
(
2
), pp.
139
144
.
2.
Gao
,
Y.
,
Ge
,
P.
, and
Liu
,
T.
,
2016
, “
Experiment Study on Electroplated Diamond Wire Saw Slicing Single-Crystal Silicon
,”
Mater. Sci. Semicond. Process.
,
56
, pp.
106
114
.
3.
Liu
,
T.
,
Ge
,
P.
,
Bi
,
W.
, and
Gao
,
Y.
,
2017
, “
Subsurface Crack Damage in Silicon Wafers Induced by Resin Bonded Diamond Wire Sawing
,”
Mater. Sci. Semicond. Process.
,
57
, pp.
147
156
.
4.
Möller
,
H. J.
,
2004
, “
Basic Mechanisms and Models of Multi-Wire Sawing
,”
Adv. Eng. Mater.
,
6
(
7
), pp.
501
513
.
5.
Choi
,
S.
,
Jang
,
B.
,
Kim
,
J.
,
Song
,
H.
, and
Han
,
M.
,
2016
, “
Cu-Contamination of Single Crystalline Silicon Wafers With Thickness of 100 μm During Multi-Wire Sawing Process
,”
Sol. Energy.
,
125
, pp.
198
206
.
6.
Yu
,
X.
,
Wang
,
P.
,
Li
,
X.
, and
Yang
,
D.
,
2012
, “
Thin Czochralski Silicon Solar Cells Based on Diamond Wire Sawing Technology
,”
Sol. Energy Mater. Sol. Cells.
,
98
, pp.
337
342
.
7.
Li
,
S.
,
Tang
,
A.
,
Liu
,
Y.
,
Wang
,
J.
,
Cui
,
D.
, and
Landers
,
R. G.
,
2016
, “
Analytical Force Modeling of Fixed Abrasive Diamond Wire Saw Machining With Application to SiC Monocrystal Wafer Processing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041003
.
8.
Brinksmeier
,
E.
,
Von Schmieden
,
W.
, and
Trumpold
,
H.
,
1987
, “
ID-Cut-Off Grinding of Brittle Materials
,”
CIRP Ann.-Manuf. Technol.
,
36
(
1
), pp.
219
222
.
9.
Clark
,
W. I.
,
Shih
,
A. J.
,
Hardin
,
C. W.
,
Lemaster
,
R. L.
, and
Mcspadden
,
S. B.
,
2003
, “
Fixed Abrasive Diamond Wire Machining—Part I: Process Monitoring and Wire Tension Force
,”
Int. J. Mach. Tools Manuf.
,
43
(
5
), pp.
523
532
.
10.
DiBitonto
,
D. D.
,
Eubank
,
P. T.
,
Patel
,
M. R.
, and
Barrufet
,
M. A.
,
1989
, “
Theoretical Models of the Electrical Discharge Machining Process—I: A Simple Cathode Erosion Model
,”
J. Appl. Phys.
,
66
(
9
), p.
4095
.
11.
Kruth
,
J.-P.
,
Stevens
,
L.
,
Froyen
,
L.
, and
Lauwers
,
B.
,
1995
, “
Study of the White Layer of a Surface Machined by Die-Sinking Electro-Discharge Machining
,”
CIRP Ann.
,
44
(
1
), pp.
169
172
.
12.
Punturat
,
J.
,
Tangwarodomnukun
,
V.
, and
Dumkum
,
C.
,
2014
, “
Surface Characteristics and Damage of Monocrystalline Silicon Induced by Wire-EDM
,”
Appl. Surf. Sci.
,
320
, pp.
83
92
.
13.
Nirala
,
C. K.
,
Unune
,
D. R.
, and
Sankhla
,
H. K.
,
2017
, “
Virtual Signal-Based Pulse Discrimination in Micro-Electro-Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
94501
.
14.
Ding
,
H.
,
Liu
,
Z.
,
Qiu
,
M.
,
Chen
,
H.
,
Tian
,
Z.
, and
Shen
,
L.
,
2015
, “
Study of Multi-Cutting by WEDM for Specific Crystallographic Planes of Monocrystalline Silicon
,”
Int. J. Adv. Manuf. Technol.
,
84
(5–8), pp.
1201
1208
.https://doi.org/10.1007/s00170-015-7784-9
15.
Rajurkar
,
K. P.
,
1985
,
Surface Damage and Shock Waves in EDM
,
SME North American Manufacturing Research Inst
,
Dearborn, MI
, pp.
379
385
.
16.
Newton
,
T. R.
,
Melkote
,
S. N.
,
Watkins
,
T. R.
,
Trejo
,
R. M.
, and
Reister
,
L.
,
2009
, “
Investigation of the Effect of Process Parameters on the Formation and Characteristics of Recast Layer in Wire-EDM of Inconel 718
,”
Mater. Sci. Eng. A.
,
513–514
, pp.
208
215
.
17.
Hasçalýk
,
A.
, and
Çaydaş
,
U.
,
2004
, “
Experimental Study of Wire Electrical Discharge Machining of AISI D5 Tool Steel
,”
ASME J. Mater. Process. Technol.
,
148
(
3
), pp.
362
367
.
18.
Ekmekci
,
B.
,
Yasar
,
H.
, and
Ekmekci
,
N.
,
2016
, “
A Discharge Separation Model for Powder Mixed Electrical Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081006
.
19.
Peng
,
W. Y.
, and
Liao
,
Y. S.
,
2003
, “
Study of Electrical Discharge Machining Technology for Slicing Silicon Ingots
,”
ASME J. Mater. Process. Technol.
,
140
(
1–3
), pp.
274
279
.
20.
Wang
,
W.
,
Liu
,
Z. X. Z. D.
,
Tian
,
Z. J.
,
Huang
,
Y. H.
, and
Liu
,
Z. X. Z. D.
,
2009
, “
High Efficiency Slicing of Low Resistance Silicon Ingot by Wire Electrolytic-Spark Hybrid Machining
,”
ASME J. Mater. Process. Technol.
,
209
(
7
), pp.
3149
3155
.
21.
Dongre
,
G.
,
Zaware
,
S.
,
Dabade
,
U.
, and
Joshi
,
S. S.
,
2015
, “
Multi-Objective Optimization for Silicon Wafer Slicing Using Wire-EDM Process
,”
Mater. Sci. Semicond. Process.
,
39
, pp.
793
806
.
22.
Joshi
,
K.
,
Ananya
,
A.
,
Bhandarkar
,
U.
, and
Joshi
,
S. S.
,
2017
, “
Ultra-Thin Silicon Wafer Slicing Using Wire-EDM for Solar Cell Application
,”
Mater. Des.
,
124
, pp.
158
170
.
23.
Wu
,
H.
, and
Melkote
,
S. N.
,
2015
, “
Analysis of Handling Stresses in Thin Solar Silicon Wafers Generated by a Rigid Vacuum Gripper
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p.
034501
.
24.
Kilickap
,
E.
,
2010
, “
Modeling and Optimization of Burr Height in Drilling of Al-7075 Using Taguchi Method and Response Surface Methodology
,”
Int. J. Adv. Manuf. Technol.
,
49
(
9–12
), pp.
911
923
.
25.
Montgomery
,
D. C.
,
2008
,
Design and Analysis of Experiments
,
Wiley
, Hoboken, NJ.
26.
Okada
,
A.
,
Uno
,
Y.
,
Nakazawa
,
M.
, and
Yamauchi
,
T.
,
2010
, “
Evaluations of Spark Distribution and Wire Vibration in Wire EDM by High-Speed Observation
,”
CIRP Ann.-Manuf. Technol.
,
59
(
1
), pp.
231
234
.
27.
Kunieda
,
M.
,
Lauwers
,
B.
,
Rajurkar
,
K. P.
, and
Schumacher
,
B. M.
,
2005
, “
Advancing EDM through Fundamental Insight Into the Process
,”
CIRP Ann.-Manuf. Technol.
,
54
(
2
), pp.
64
87
.
28.
M.
,
Azam
,
M.
,
Jahanzaib
,
Junaid
,
A.
,
Abbasi
,
M.
,
Abbas
,
A.
,
Wasim
,
S.
,
Hussain
,
J. A.
,
Abbasi
,
M.
,
Abbas
,
A.
,
Wasim
,
S.
, and
Hussain
,
2016
, “
Parametric Analysis of Recast Layer Formation in Wire-Cut EDM of HSLA Steel
,”
Int. J. Adv. Manuf. Technol.
,
87
(
1–4
), pp.
713
722
.
29.
Erden
,
A.
,
1983
, “
Effect of Materials on the Mechanism of Electric Discharge Machining (E.D.M.)
,”
ASME J. Eng. Mater. Technol.
,
105
(
2
), pp.
132
138
.
30.
Patel
,
M. R.
,
Barrufet
,
M. A.
,
Eubank
,
P. T.
, and
DiBitonto
,
D. D.
,
1989
, “
Theoretical Models of the Electrical Discharge Machining Process—II: The Anode Erosion Model
,”
J. Appl. Phys.
,
66
(
9
), p.
4104
.
31.
Kansal
,
H. K.
,
Singh
,
S.
, and
Kumar
,
P.
,
2008
, “
Numerical Simulation of Powder Mixed Electric Discharge Machining (PMEDM) Using Finite Element Method
,”
Math. Comput. Model.
,
47
(
11–12
), pp.
1217
1237
.
32.
Liao
,
Y. S.
, and
Woo
,
J. C.
,
1997
, “
The Effects of Machining Settings on the Behavior of Pulse Trains in the WEDM Process
,”
J. Mater. Process. Technol.
,
71
(
3
), pp.
433
439
.
33.
Jithin
,
S.
,
Bhandarkar
,
U. V.
, and
Joshi
,
S. S.
,
2017
, “
Analytical Simulation of Random Textures Generated in Electrical Discharge Texturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111002
.
34.
Richter
,
H.
,
Wang
,
Z. P.
, and
Ley
,
L.
,
1981
, “
The One Phonon Raman Spectrum in Microcrystalline Silicon
,”
Solid State Commun.
,
39
(
5
), pp.
625
629
.
35.
Horsfall
,
A. B.
,
dos Santos
,
J. M. M.
,
Soare
,
S. M.
,
Wright
,
N. G.
,
O Neill
,
A. G.
,
Bull
,
S. J.
,
Walton
,
A. J.
,
Gundlach
,
A. M.
, and
Stevenson
,
J. T. M.
,
2003
, “
Direct Measurement of Residual Stress in Sub-Micron Interconnects
,”
Semicond. Sci. Technol.
,
18
(
11
), pp.
992
996
.
36.
De Wolf
,
I.
,
1996
, “
Micro-Raman Spectroscopy to Study Local Mechanical Stress in Silicon Integrated Circuits
,”
Semicond. Sci. Technol.
,
11
(
2
), pp.
139
154
.
37.
Kamins
,
T.
,
1998
,
Polycrystalline Silicon for Integrated Circuits and Displays
,
Springer, Boston, MA
.
38.
Teixeira
,
R. C.
,
Doi
,
I.
,
Zakia
,
M. B. P.
,
Diniz
,
J. A.
, and
Swart
,
J. W.
,
2004
, “
Micro-Raman Stress Characterization of Polycrystalline Silicon Films Grown at High Temperature
,”
Mater. Sci. Eng. B.
,
112
(
2–3
), pp.
160
164
.
39.
Zhou
,
P.
,
Yan
,
Y.
,
Huang
,
N.
,
Wang
,
Z.
,
Kang
,
R.
, and
Guo
,
D.
,
2017
, “
Residual Stress Distribution in Silicon Wafers Machined by Rotational Grinding
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081012
.
You do not currently have access to this content.