This paper presents investigation findings on additive manufacturing (AM) aspects of Ti6Al4V by microplasma transferred arc powder deposition (μ-PTAPD) process in continuous and dwell-time mode. Pilot experiments were conducted to identify feasible values of six important parameters of μ-PTAPD process for single-layer deposition followed by 27 main experiments varying three parameters. Energy consumption aspects were used to identify optimum values of parameters varied during main experiments for multilayer deposition. It revealed that higher values of flow rate of powder and travel speed of deposition head result in smaller values of power consumption per unit flow rate of powder and energy consumption per unit traverse length. Continuous and dwell-time modes were used to study deposition characteristics, microstructure, lamellae widths, wear characteristics, tensile properties, fractography of tensile specimen, wear mechanism, and microhardness of multilayer depositions. Dwell-time deposition yielded higher effective wall width (EWW), deposition efficiency (DE), yield strength, ultimate strength, microhardness, surface straightness, lower strain, wear volume and friction coefficient, and smaller lamellar width. It had good deposition quality with fine partial martensite and basket-weave microstructure. Fractography analysis exhibited fine dimple rupture for dwell-time multilayer deposition and occurrence of elongated regions for continuous multilayer deposition. Wear of dwell-time multilayer deposition occurred by microploughing and microcutting resulting in smaller wear debris. Comparison of Ti6Al4V depositions by different processes revealed that dwell-time μ-PTAPD process is cost-effective than laser-based processes and energy efficient than pulsed plasma arc process.

References

References
1.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2013
, “
Numerical Modeling of Heat Distribution in the Electron Beam Melting of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p. 0
61010
.
2.
Yang
,
M.
,
Zheng
,
H.
,
Qi
,
B.
, and
Yang
,
Z.
,
2016
, “
Microstructure and Fatigue Property of Ti–6Al–4V by Ultrahigh Frequency Pulse Welding
,”
ASME. J. Manuf. Sci. Eng.
,
139
(
4
), p.
041015
.
3.
Mahamood
,
R. M.
,
Akinlabi
,
E. T.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2013
, “
Characterizing the Effect of Laser Power Density on Microstructure, Microhardness, and Surface Finish of Laser Deposited Titanium Alloy
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p. 0
64502
.
4.
Baykasoglu
,
C.
,
Akyildiz
,
O.
,
Candemir
,
D.
,
Yang
,
Q.
, and
To
,
A. C.
,
2018
, “
Predicting Microstructure Evolution During Directed Energy Deposition Additive Manufacturing of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051003
.
5.
Lin
,
J. J.
,
Lv
,
Y. H.
,
Liu
,
Y. X.
,
Xu
,
B. S.
,
Sun
,
Z.
,
Li
,
Z. G.
, and
Wu
,
Y. X.
,
2016
, “
Microstructural Evolution and Mechanical Properties of Ti-6Al-4V Wall Deposited by Pulsed Plasma Arc Additive Manufacturing
,”
Mater. Des.
,
102
, pp.
30
40
.
6.
Nguyen
,
T.
,
Kwon
,
P.
,
Kang
,
D.
, and
Bieler
,
T. R.
,
2016
, “
The Origin of Flank Wear in Turning Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121013
.
7.
Massoni
,
B.
, and
Campbell
,
M. I.
,
2016
, “
Optimizing Cutting Planes for Advanced Joining and Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031001
.
8.
Chowdhury
,
S.
,
Mhapsekar
,
K.
, and
Anand
,
S.
,
2017
, “
Part Build Orientation Optimization and Geometry Compensations for Additive Manufacturing Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), pp.
1
15
.
9.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p. 0
61016
.
10.
Yao
,
B.
,
Imani
,
F.
,
Sakpal
,
A. S.
,
Reutzel
,
E.
, and
Yang
,
H.
,
2017
, “
Multifractal Analysis of Image Profiles for the Characterization and Detection of Defects in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031014
.
11.
Sarkar
,
S.
,
Kumar
,
C.
, and
Nath
,
A.
,
2017
, “
Effect of Different Heat Treatments on Mechanical Properties of Laser Sintered Additive Manufactured Parts
,”
ASME. J. Manuf. Sci. Eng.
,
139
(
11
), p.
111010
.
12.
Samie Tootooni
,
M. M.
,
Dsouza
,
A.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Kong
,
Z.
, and
Borgesen
,
P.
,
2017
, “
Classifying the Dimensional Variation in Additive Manufactured Parts From Laser-Scanned Three-Dimensional Point Cloud Data Using Machine Learning Approaches
,”
ASME. J. Manuf. Sci. Eng.
,
139
(
9
), p.
091005
.
13.
Nikam
,
S. H.
,
Jain
,
N. K.
, and
Jhavar
,
S.
,
2016
, “
Thermal Modeling of Geometry of Single-Track Deposition in Micro-Plasma Transferred Arc Deposition Process
,”
J. Mater. Process. Technol.
,
230
, pp.
121
130
.
14.
Laureijs
,
R. E.
,
Roca
,
J.
,
Narra
,
S.
,
Montgomery
,
C.
,
Beuth
,
J. L.
, and
Fuchs
,
E. H.
,
2017
, “
Metal Additive Manufacturing: Cost Competitive Beyond Low Volumes
,”
ASME. J. Manuf. Sci. Eng.
,
139
(
8
), p.
081010
9.
15.
Sawant
,
M. S.
, and
Jain
,
N. K.
,
2017
, “
Characteristics of Single-Track and Multi-Track Depositions of Stellite by Micro-Plasma Transferred Arc Powder Deposition Process
,”
J. Mater. Eng. Perform.
,
26
(
8
), pp.
4029
4039
.
16.
Ranjan
,
R.
,
Samant
,
R.
, and
Anand
,
S.
,
2017
, “
Integration of Design for Manufacturing Methods With Topology Optimization in Additive Manufacturing
,”
ASME. J. Manuf. Sci. Eng.
,
139
(
6
), p.
061007
.
17.
Chen
,
C.
,
Shen
,
Y.
, and
Tsai
,
H.
,
2016
, “
A Foil-Based Additive Manufacturing Technology for Metal Parts
,”
ASME. J. Manuf. Sci. Eng.
,
139
(
2
), p.
024501
.
18.
Baufeld
,
B.
,
Brandl
,
E.
, and
Van Der Biest
,
O.
,
2011
, “
Wire Based Additive Layer Manufacturing: Comparison of Microstructure and Mechanical Properties of Ti-6Al-4V Components Fabricated by Laser-Beam Deposition and Shaped Metal Deposition
,”
J. Mater. Process. Technol.
,
211
(
6
), pp.
1146
1158
.
19.
Martina
,
F.
,
Mehnen
,
J.
,
Williams
,
S. W.
,
Colegrove
,
P.
, and
Wang
,
F.
,
2012
, “
Investigation of the Benefits of Plasma Deposition for the Additive Layer Manufacture of Ti-6Al-4V
,”
J. Mater. Process. Technol.
,
212
(
6
), pp.
1377
1386
.
20.
Karlsson
,
J.
,
Snis
,
A.
,
Engqvist
,
H.
, and
Lausmaa
,
J.
,
2013
, “
Characterization and Comparison of Materials Produced by Electron Beam Melting (EBM) of Two Different Ti-6Al-4V Powder Fractions
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2109
2118
.
21.
Brandl
,
E.
,
Palm
,
F.
,
Michailov
,
V.
,
Viehweger
,
B.
, and
Leyens
,
C.
,
2011
, “
Mechanical Properties of Additive Manufactured Titanium (Ti-6Al-4V) Blocks Deposited by a Solid-State Laser and Wire
,”
Mater. Des.
,
32
(
10
), pp.
4665
4675
.
22.
Gharbi
,
M.
,
Peyre
,
P.
,
Gorny
,
C.
,
Carin
,
M.
,
Morville
,
S.
,
Le Masson
,
P.
,
Carron
,
D.
, and
Fabbro
,
R.
,
2013
, “
Influence of Various Process Conditions on Surface Finishes Induced by the Direct Metal Deposition Laser Technique on a Ti-6Al-4V Alloy
,”
J. Mater. Process. Technol.
,
213
(
5
), pp.
791
800
.
23.
Chandramohan
,
P.
,
Bhero
,
S.
,
Obadele
,
B. A.
, and
Olubambi
,
P. A.
,
2017
, “
Laser Additive Manufactured Ti-6Al-4V Alloy: Tribology and Corrosion Studies
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
3051
3061
.
24.
Mahamood
,
R. M.
, and
Akinlabi
,
E. T.
,
2017
, “
Scanning Speed and Powder Flow Rate Influence on the Properties of Laser Metal Deposition of Titanium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2419
2426
.
25.
Jhavar
,
S.
,
Jain
,
N. K.
, and
Paul
,
C. P.
,
2014
, “
Development of Micro-Plasma Transferred Arc (μ-PTA) Wire Deposition Process for Additive Layer Manufacturing Applications
,”
J. Mater. Process. Technol.
,
214
(
5
), pp.
1102
1110
.
26.
Sawant
,
M. S.
, and
Jain
,
N. K.
,
2017
, “
Investigations on Wear Characteristics of Stellite Coating by Micro-Plasma Transferred Arc Powder Deposition Process
,”
Wear
,
378–379
, pp.
155
164
.
27.
Xie
,
Y.
,
Zhang
,
H.
, and
Zhou
,
F.
,
2016
, “
Improvement in Geometrical Accuracy and Mechanical Property for Arc-Based Additive Manufacturing Using Metamorphic Rolling Mechanism
,”
ASME. J. Manuf. Sci. Eng.
,
138
(
11
), p.
111002
.
28.
Jain
,
N. K.
,
Sawant
,
M. S.
,
Nikam
,
S. H.
, and
Jhavar
,
S.
,
2016
, “
Metal Deposition: Plasma-Based Processes
,”
Encyclopedia of Plasma Technology
,
J.
Leon Shohet
ed.,
CRC Press
, Boca Raton, FL, pp.
722
740
.
You do not currently have access to this content.