Five-axis machine with rotary-tilting spindle head (RTSH) is always used for sculptured surface machining, and the tool-tip dynamics in various machining postures along the tool path directly affect the machining accuracy and stability. To rapidly evaluate the tool-tip dynamics at different postures during the structural design of tool-spindle-spindle head (TSSH) assembly, this paper proposes a coupled dynamic model of tool-spindle-bearing system (TSBS) and RTSH. The model is a rigid-flexible multibody dynamic model with 36 degrees-of-freedom (DOFs), where in the rotary shaft, swivel shaft and housing are treated as rigid bodies; the tool, tool holder, and spindle shaft are modeled by reduced beams; the bearings and flexible joints are modeled as spring-damping elements. The fully Cartesian coordinates and Lagrangian method are employed to deduce a general parametric dynamic equation. The analytical method for calculating the contact stiffness of bearings and flexible joints is systematically presented, including tool-holder joint, holder-spindle joint, spindle bearings, hirth coupling, and the bearings and locking joints of rotary and swivel shafts. The model is verified by the frequency response functions (FRFs) testing and modal testing at different postures. The experimental results show that the proposed model can be used for accurate and efficient evaluation of the tool-tip FRFs, natural frequencies and mode shapes of TSSH at an arbitrary posture.

References

References
1.
Huang
,
T.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2017
, “
Tool Orientation Optimization for Reduction of Vibration and Deformation in Ball-End Milling of Thin-Walled Impeller Blades
,”
Procedia CIRP
,
58
, pp.
210
215
.
2.
Tobias
,
S. A.
,
1965
,
Machine-Tool Vibration
,
Wiley
, Hoboken, NJ.
3.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
.
4.
Altintas
,
Y.
, and
Weck
,
M.
,
2004
, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Ann.-Manuf. Technol.
,
53
(
2
), pp.
619
642
.
5.
Schmitz
,
T. L.
, and
Smith
,
K. S.
,
2008
,
Machining Dynamics: Frequency Response to Improved Productivity
,
Springer Science & Business Media
, New York.
6.
Brecher
,
C.
,
Esser
,
M.
, and
Witt
,
S.
,
2009
, “
Interaction of Manufacturing Process and Machine Tool
,”
CIRP Ann.-Manuf. Technol.
,
58
(
2
), pp.
588
607
.
7.
Yan
,
R.
,
Li
,
H.
,
Peng
,
F.
,
Tang
,
X.
,
Xu
,
J.
, and
Zeng
,
H.
,
2017
, “
Stability Prediction and Step Optimization of Trochoidal Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091006
.
8.
Cao
,
Y.
, and
Altintas
,
Y.
,
2004
, “
A General Method for the Modeling of Spindle-Bearing Systems
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1089
1104
.
9.
Cao
,
H.
,
Li
,
B.
, and
He
,
Z.
,
2012
, “
Chatter Stability of Milling With Speed-Varying Dynamics of Spindles
,”
Int. J. Mach. Tools Manuf.
,
52
(
1
), pp.
50
58
.
10.
Jiang
,
S.
, and
Zheng
,
S.
,
2010
, “
A Modeling Approach for Analysis and Improvement of Spindle-Drawbar-Bearing Assembly Dynamics
,”
Int. J. Mach. Tools Manuf.
,
50
(
1
), pp.
131
142
.
11.
Schmitz
,
T. L.
,
Davies
,
M. A.
, and
Kennedy
,
M. D.
,
2001
, “
Tool Point Frequency Response Prediction for High-Speed Machining by RCSA
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
700
707
.
12.
Schmitz
,
T. L.
, and
Duncan
,
G. S.
,
2005
, “
Three-Component Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
781
790
.
13.
Ertürk
,
A.
,
Budak
,
E.
, and
Özgüven
,
H. N.
,
2007
, “
Selection of Design and Operational Parameters in Spindle–Holder–Tool Assemblies for Maximum Chatter Stability by Using a New Analytical Model
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1401
1409
.
14.
Yan
,
R.
,
Tang
,
X.
,
Peng
,
F.
,
Li
,
Y.
, and
Li
,
H.
,
2017
, “
RCSA-Based Method for Tool Frequency Response Function Identification Under Operational Conditions Without Using Noncontact Sensor
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061009
.
15.
Lin
,
C.-W.
,
Tu
,
J. F.
, and
Kamman
,
J.
,
2003
, “
An Integrated Thermo-Mechanical-Dynamic Model to Characterize Motorized Machine Tool Spindles During Very High Speed Rotation
,”
Int. J. Machine Tools Manuf.
,
43
(
10
), pp.
1035
1050
.
16.
Zahedi
,
A.
, and
Movahhedy
,
M.
,
2012
, “
Thermo-Mechanical Modeling of High Speed Spindles
,”
Sci. Iran.
,
19
(
2
), pp.
282
293
.
17.
Holkup
,
T.
,
Cao
,
H.
,
Kolář
,
P.
,
Altintas
,
Y.
, and
Zelený
,
J.
,
2010
, “
Thermo-Mechanical Model of Spindles
,”
CIRP Ann.-Manuf. Technol.
,
59
(
1
), pp.
365
368
.
18.
Ertürk
,
A.
,
Özgüven
,
H.
, and
Budak
,
E.
,
2007
, “
Effect Analysis of Bearing and Interface Dynamics on Tool Point FRF for Chatter Stability in Machine Tools by Using a New Analytical Model for Spindle–Tool Assemblies
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
23
32
.
19.
Wang
,
B.
,
Sun
,
W.
,
Xu
,
K.
,
Zhang
,
J.
, and
Wen
,
B.
,
2014
, “
The Nonlinear Stability Prediction and FEM Modeling of High-Speed Spindle System With Joints Dynamic Characteristics
,”
Shock Vib.
,
2014
, p. 153504.
20.
Movahhedy
,
M. R.
, and
Gerami
,
J. M.
,
2006
, “
Prediction of Spindle Dynamics in Milling by Sub-Structure Coupling
,”
Int. J. Mach. Tools Manuf.
,
46
(
3–4
), pp.
243
251
.
21.
Namazi
,
M.
,
Altintas
,
Y.
,
Abe
,
T.
, and
Rajapakse
,
N.
,
2007
, “
Modeling and Identification of Tool Holder–Spindle Interface Dynamics
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1333
1341
.
22.
Ahmadian
,
H.
, and
Nourmohammadi
,
M.
,
2010
, “
Tool Point Dynamics Prediction by a Three-Component Model Utilizing Distributed Joint Interfaces
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
998
1005
.
23.
Schmitz
,
T. L.
,
Powell
,
K.
,
Won
,
D.
,
Duncan
,
G. S.
,
Sawyer
,
W. G.
, and
Ziegert
,
J. C.
,
2007
, “
Shrink Fit Tool Holder Connection Stiffness/Damping Modeling for Frequency Response Prediction in Milling
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1368
1380
.
24.
Cao
,
Y.
, and
Altintas
,
Y.
,
2007
, “
Modeling of Spindle-Bearing and Machine Tool Systems for Virtual Simulation of Milling Operations
,”
Int. J. Machine Tools Manuf.
,
47
(
9
), pp.
1342
1350
.
25.
Kolar
,
P.
,
Sulitka
,
M.
, and
Janota
,
M.
,
2011
, “
Simulation of Dynamic Properties of a Spindle and Tool System Coupled With a Machine Tool Frame
,”
Int. J. Adv. Manuf. Technol.
,
54
(
1–4
), pp.
11
20
.
26.
Hung
,
J.-P.
,
Lai
,
Y.-L.
,
Luo
,
T.-L.
, and
Su
,
H.-C.
,
2013
, “
Analysis of the Machining Stability of a Milling Machine Considering the Effect of Machine Frame Structure and Spindle Bearings: Experimental and Finite Element Approaches
,”
Int. J. Adv. Manuf. Technol.
,
68
(
9–12
), pp.
2393
2405
.
27.
Albertelli
,
P.
,
Cau
,
N.
,
Bianchi
,
G.
, and
Monno
,
M.
,
2012
, “
The Effects of Dynamic Interaction Between Machine Tool Subsystems on Cutting Process Stability
,”
Int. J. Adv. Manuf. Technol.
,
58
(
9–12
), pp.
923
932
.
28.
Liu
,
H.
,
Wang
,
L.
, and
Zhao
,
W.
,
2014
, “
Analysis of Position-Dependent Dynamic Characteristics for Machine Tools Using a Variable-Coefficient Linear Model
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
15
), pp.
2690
2701
.
29.
Luo
,
B.
,
Pan
,
D.
,
Cai
,
H.
,
Mao
,
X.
,
Peng
,
F.
,
Mao
,
K.
, and
Li
,
B.
,
2015
, “
A Method to Predict Position-Dependent Structural Natural Frequencies of Machine Tool
,”
Int. J. Mach. Tools Manuf.
,
92
, pp.
72
84
.
30.
Brecher
,
C.
,
Altstädter
,
H.
, and
Daniels
,
M.
,
2015
, “
Axis Position Dependent Dynamics of Multi-Axis Milling Machines
,”
Procedia CIRP
,
31
, pp.
508
514
.
31.
Yang
,
X.
,
Lu
,
D.
,
Zhang
,
J.
, and
Zhao
,
W.
,
2015
, “
Dynamic Electromechanical Coupling Resulting From the Air-Gap Fluctuation of the Linear Motor in Machine Tools
,”
Int. J. Mach. Tool Manuf.
,
94
, pp.
100
108
.
32.
Law
,
M.
,
Altintas
,
Y.
, and
Phani
,
A. S.
,
2013
, “
Rapid Evaluation and Optimization of Machine Tools With Position-Dependent Stability
,”
Int. J. Mach. Tools Manuf.
,
68
, pp.
81
90
.
33.
Dhupia
,
J.
,
Powalka
,
B.
,
Katz
,
R.
, and
Ulsoy
,
A. G.
,
2007
, “
Dynamics of the Arch-Type Reconfigurable Machine Tool
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
326
334
.
34.
Deng
,
C.
,
Miao
,
J.
,
Wei
,
B.
,
Feng
,
Y.
, and
Zhao
,
Y.
,
2018
, “
Evaluation of Machine Tools With Position-Dependent Milling Stability Based on Kriging Model
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
33
42
.
35.
Hung
,
J.
,
Chen
,
Y.
, and
Luo
,
T.
,
2013
, “
Effect of Tool Orientation on the Machining Stability of a Milling Machine With Swinging Head
,”
World Acad. Sci. Eng. Tech.
,
77
, pp.
958
964
.
36.
Yan
,
M.
,
Tang
,
L.
,
Zheng
,
P.
, and
Zhang
,
M. Y.
,
2011
, “
Modal Analysis about Direct-Drive Bi-Rotary Milling Head
,”
Adv. Mater. Res.
,
154–155
, pp.
299
303
.
37.
Shi
,
B.
,
Huang
,
M. F.
,
Chen
,
Y.
,
Hu
,
R. K.
,
Yang
,
W. J.
, and
Tang
,
J. S.
,
2013
, “
Finite Element Static Stiffness Analysis of the A/C Axes Bi-Rotary Milling Head
,”
Adv. Mater. Res.
,
655–657
, pp.
1195
1199
.
38.
Law
,
M.
,
Grossi
,
N.
,
Scippa
,
A.
,
Phani
,
A.
, and
Altintas
,
Y.
,
2014
, “
Modeling the Orientation-Dependent Dynamics of Machine Tools With Gimbal Heads
,”
Third International Chemnitz Manufacturing Colloquium (ICMC 2014)
, pp.
1
16
.
39.
Zhang
,
J.
,
Li
,
J.
,
Xie
,
Z.
,
Du
,
C.
,
Gui
,
L.
, and
Zhao
,
W.
,
2016
, “
Rapid Dynamics Prediction of Tool Point for Bi-Rotary Head Five-Axis Machine Tool
,”
Precis. Eng.
,
48
, pp. 203–215.
40.
Du
,
C.
,
Zhang
,
J.
,
Lu
,
D.
,
Zhang
,
H.
, and
Zhao
,
W.
,
2016
, “
A Parametric Modeling Method for the Pose-Dependent Dynamics of Bi-Rotary Milling Head
,”
Proc. Inst. Mech. Eng., Part B
,
232
(5), pp. 797–815.
41.
Du
,
C.
,
Lu
,
D.
,
Zhang
,
J.
,
Zhang
,
H.
, and
Zhao
,
W.
,
2016
, “
Pose-Dependent Dynamic Modeling and Analysis of Bi-Rotary Milling Head
,”
ASME
Paper No. MSEC2016-8862.
42.
Friswell
,
M.
,
Garvey
,
S.
, and
Penny
,
J.
,
1998
, “
The Convergence of the Iterated IRS Method
,”
J. Sound Vib.
,
211
(
1
), pp.
123
132
.
43.
Shigley
,
J. E.
,
Mischke
,
C. R.
, and
Budynas
,
R. G.
,
2004
,
Mechanical Engineering Design
,
McGraw-Hill
, New York.
44.
Fu
,
W.
,
Huang
,
Y.
,
Zhang
,
X.
, and
Guo
,
Q.
,
2000
, “
Experimental Investigation of Dynamic Normal Characteristics of Machined Joint Surfaces
,”
ASME J. Vib. Acoust.
,
122
(
4
), pp.
393
398
.
45.
Wang
,
L.
,
Liu
,
H.
,
Zhang
,
J.
, and
Zhao
,
W.
,
2013
, “
Analysis and Modeling for Flexible Joint Interfaces Under Micro and Macro Scale
,”
Precis. Eng.
,
37
(
4
), pp.
817
824
.
46.
Gonzalez-Valadez
,
M.
,
Baltazar
,
A.
, and
Dwyer-Joyce
,
R.
,
2010
, “
Study of Interfacial Stiffness Ratio of a Rough Surface in Contact Using a Spring Model
,”
Wear
,
268
(
3–4
), pp.
373
379
.
47.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Advanced Concepts of Bearing Technology: Rolling Bearing Analysis
,
CRC Press
, Boca Raton, FL.
You do not currently have access to this content.