In this paper, a novel fixture mechanism with combining a mobility of the legged robot and advantages of parallel mechanism is designed to hold the different size and shape, large-scale workpiece. The proposed mobile fixture mechanism holds the workpiece as a parallel manipulator while it walks as a legged robot. This kind of robotized fixtures can possess high self-configurable ability to accommodate a wider variety of products. In order to obtain the best kinematic dexterity and accuracy characteristics, comprehensive performance optimization is performed by non-dominated-genetic algorithm (NSGA-II). In the optimization procedure, a conventional kinematic transformation matrix (Jacobian matrix) and error propagation matrix are obtained through derivation and differential motion operations. The singular values and condition number based on velocity Jacobians and error amplification factors based on error propagation matrix are derived; in addition, relative pose error range of end effector is also derived. On the basis of the above measure indices, three kinds of nonlinear optimization problems are defined to obtain the optimal architecture parameters for better kinematic accuracy and dexterity in workspace. Comparison analyses of the optimized results are performed.

References

References
1.
Li
,
B.
,
Shiu
,
B. W.
, and
Lau
,
K. J.
,
2003
, “
Robust Fixture Configuration Design for Sheet Metal Assembly With Laser Welding
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
120
127
.
2.
Meshreki
,
M.
,
Ko¨vecses
,
J.
,
Attia
,
H.
, and
Tounsi, N.
,
2008
, “
Dynamics Modeling and Analysis of Thin-Walled Aerospace Structures for Fixture Design in Multiaxis Milling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), pp.
361
374
.
3.
Luo
,
C.
,
Zhu
,
L. M.
, and
Ding
,
H.
,
2011
, “
Two-Sided Quadratic Model for Workpiece Fixturing Analysis
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031004
.
4.
Xing
,
Y.
,
2017
, “
Fixture Layout Design of Sheet Metal Parts Based on Global Optimization Algorithms
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101004
.
5.
Gameros
,
A. A.
,
Axinte
,
D.
,
Siller
,
H. R.
,
Lowth, S.
, and
Winton, P.
,
2017
, “
Experimental and Numerical Study of a Fixturing System for Complex Geometry and Low Stiffness Components
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
045001
.
6.
Mohammed
,
A.
,
Schmidt
,
B.
, and
Wang
,
L.
,
2017
, “
Energy-Efficient Robot Configuration for Assembly
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051007
.
7.
Zheng
,
F.
,
Hua
,
L.
,
Han
,
X.
,
Li, B.
, and
Chen, D.
,
2017
, “
Synthesis of Shaped Noncircular Gear Using a Three-Linkage Computer Numerical Control Shaping Machine
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071003
.
8.
Zhao
,
Y. M.
,
Lin
,
Y.
,
Xi
,
F.
,
Guo, S.
, and
Ouyang, P.
,
2017
, “
Switch-Based Sliding Mode Control for Position-Based Visual Servoing of Robotic Riveting System
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041010
.
9.
Zhang
,
J.
,
Zhao
,
Y. Q.
, and
Jin
,
Y.
,
2016
, “
Elastodynamic Modeling and Analysis for an Exechon Parallel Kinematic Machine
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), pp.
7190
7200
.
10.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
,
Springer
,
Dordrecht, The Netherlands
.
11.
Zhou
,
X.
,
Xu
,
Y.
,
Yao
,
J.
,
Zheng, K.
, and
Zhao, Y.
,
2016
, “
Stiffness Modeling and Comparison of the 5-UPS/PRPU Parallel Machine Tool With Its Non-Redundant Counterpart
,”
Proc. Inst. Mech. Eng., Part B
,
231
(
9
), pp.
1646
1657
.
12.
Fang
,
X.
,
Zhang
,
S.
,
Xu
,
Q.
,
Wang, T.
,
Liu, Y.
, and
Chen, X.
,
2015
, “
Optimization of a Crossbar Parallel Machine Tool Based on Workspace and Dexterity
,”
J. Mech. Sci. Technol.
,
29
(
8
), pp.
3297
3307
.
13.
Xie
,
F.
,
Liu
,
X. J.
, and
Wang
,
J.
,
2012
, “
A 3DOF Parallel Manufacturing Module and Its Kinematic Optimization
,”
Rob. Comput.-Integr. Manuf.
,
28
(
3
), pp.
334
343
.
14.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.
15.
Karasic
,
G.
, and
Asada
,
H.
,
2011
, “
Flip-and-Slide Magnetic Paired Robots for Aircraft Manufacturing and Maintenance
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
694
700
.
16.
Menon
,
M.
, and
Asasda
,
H.
,
2009
, “
Actuation and Position Estimation of a Passive Mobile End Effector From Across a Thin Wall for Heavy-Duty Aircraft Manufacturing
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Kobe, Japan, May 12–17, pp.
985
991
.
17.
Wan
,
X. J.
,
Li
,
Q.
, and
Wang
,
K.
,
2017
, “
Dimensional Synthesis of a Robotized Cell of Support Fixture
,”
Rob. Comput.-Integr. Manuf.
,
48
, pp.
80
92
.
18.
Merlet
,
J. P.
,
2006
, “
Designing a Parallel Manipulator for a Specific Workspace
,”
Int. J. Rob. Res.
,
16
(
4
), pp.
545
556
.
19.
Boudreau
,
R.
, and
Gosselin
,
C. M.
,
1999
, “
The Synthesis of Planar Parallel Manipulators With a Genetic Algorithm
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
533
537
.
20.
Laribi
,
M. A.
,
Romdhane
,
L.
, and
Zeghloul
,
S.
,
2007
, “
Analysis and Dimensional Synthesis of the Delta Robot for a Prescribed Workspace
,”
Mech. Mach. Theory
,
42
(
7
), pp.
859
870
.
21.
Li
,
Y.
, and
Xu
,
Q.
,
2004
, “
Optimal Kinematic Design for a General 3-PRS Spatial Parallel Manipulator Based on Dexterity and Workspace
,”
11th International Conference on Machine Design and Production
, Antalya, Turkey, Oct. 13–15, pp.
571
584
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.718.2319&rep=rep1&type=pdf
22.
Min
,
K. L.
, and
Park
,
K. W.
,
2000
, “
Workspace and Singularity Analysis of a Double Parallel Manipulator
,”
IEEE/ASME Trans. Mechatronics
,
5
(
4
), pp.
367
375
.
23.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
24.
Endo
,
H.
,
2015
, “
Application of Robotic Manipulability Indices to Evaluate Thumb Performance During Smart Phone Touch Operations
,”
Ergonomics
,
58
(
5
), pp.
736
747
.
25.
Zhao
,
Y.
,
2013
, “
Dimensional Synthesis of a Three Translational Degrees of Freedom Parallel Robot While Considering Kinematic Anisotropic Property
,”
Rob. Comput.-Integr. Manuf.
,
29
(
1
), pp.
169
179
.
26.
Zhao
,
Y.
,
2013
, “
Dynamic Optimum Design of a Three Translational Degrees of Freedom Parallel Robot While Considering Anisotropic Property
,”
Rob. Comput.-Integr. Manuf.
,
29
(
4
), pp.
100
112
.
27.
Cirillo
,
A.
,
Cirillo
,
P.
,
Maria
,
G. D.
,
Marino, A.
,
Natale, C.
, and
Pirozzi, S.
,
2017
, “
Optimal Custom Design of Both Symmetric and Unsymmetrical Hexapod Robots for Aeronautics Applications
,”
Rob. Comput.-Integr. Manuf.
,
44
, pp.
1
16
.
28.
Salisbury
,
J. K.
, and
Craig
,
J. J.
,
1981
, “
Articulated Hands Force Control and Kinematic Issues
,”
Int. J. Rob. Res.
,
1
(
1
), pp.
4
17
.
29.
Angeles
,
J.
, and
Angeles
,
J.
,
2007
,
Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms
(
Mechanical Engineering Series
, Vol.
2
), p.
98
.
30.
Zhang
,
Z. C. D.
,
2012
, “
Stiffness Optimization of a Novel Reconfigurable Parallel Kinematic Manipulator
,”
Robotica
,
30
(
3
), pp.
433
447
.
31.
Yang
,
D. C. H.
, and
Lai
,
Z. C.
,
1985
, “
On the Dexterity of Robotic Manipulators-Service Angle
,”
ASME J. Mech. Des.
,
107
(
2
), pp.
262
270
.
32.
Zhang
,
D.
, and
Gao
,
Z.
,
2015
, “
Performance Analysis and Optimization of a Five-Degrees-of-Freedom Compliant Hybrid Parallel Micromanipulator
,”
Rob. Comput.-Integr. Manuf.
,
34
(
1
), pp.
20
29
.
33.
Yao
,
J.
,
Gu
,
W.
,
Feng
,
Z.
,
Chen, L.
,
Xu, Y.
, and
Zhao, Y.
,
2017
, “
Dynamic Analysis and Driving Force Optimization of a 5-DOF Parallel Manipulator With Redundant Actuation
,”
Rob. Comput.-Integr. Manuf.
,
48
, pp.
51
58
.
34.
Merlet
,
J. P.
,
2005
, “
Jacobian, Manipulability, Condition Number and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.
35.
Cardou
,
P.
,
Bouchard
,
S.
, and
Gosselin
,
C.
,
2010
, “
Kinematic-Sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
166
173
.
36.
Wu
,
C.
,
Liu
,
X. J.
, and
Wang
,
J.
,
2009
, “
Force Transmission Analysis of Spherical 5R Parallel Manipulators
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
(
ReMAR
), London, June 22–24, pp.
331
336
.https://ieeexplore.ieee.org/document/5173850/
37.
Huang
,
T.
,
Wang
,
M.
,
Yang
,
S.
,
Sun, T.
,
Chetwynd, D. G.
, and
Xie, F.
,
2014
, “
Force/Motion Transmissibility Analysis of Six Degree of Freedom Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031010
.
38.
Song
,
Y.
,
Gao
,
H.
,
Sun
,
T.
,
Dong, G.
,
Lian, B.
, and
Qi, Y.
,
2014
, “
Kinematic Analysis and Optimal Design of a Novel 1T3R Parallel Manipulator With an Articulated Travelling Plate
,”
Rob. Comput.-Integr. Manuf.
,
30
(
5
), pp.
508
516
.
39.
Wang
,
J.
, and
Masory
,
O.
, 1993, “
On the Accuracy of a Stewart Platform—Part I: The Effect of Manufacturing Tolerances
,”
IEEE
International Conference on Robotics and Automation
, Atlanta, GA, May 2–6, pp.
114
120.
40.
Kim
,
H. S.
, and
Choi
,
Y. J.
,
2015
, “
The Kinematic Error Bound Analysis of the Stewart Platform
,”
J. Field Rob.
,
17
(
1
), pp.
63
73
.
41.
Ropponen
,
T.
, and
Arai
,
T.
,
1995
, “
Accuracy Analysis of a Modified Stewart Platform Manipulator
,”
IEEE
International Conference on Robotics and Automation,
Nagoya, Japan, May 21–27, pp.
521
525
.
42.
Jiang
,
Y.
,
Li
,
T.
,
Wang
,
L.
, and
Chen, F.
,
2018
, “
Kinematic Error Modeling and Identification of the Over-Constrained Parallel Kinematic Machine
,”
Rob. Comput.-Integr. Manuf.
,
49
, pp.
105
119
.
43.
Li
,
T.
, and
Ye
,
P.
,
2003
, “
The Measurement of Kinematic Accuracy for Various Configurations of Parallel Manipulators
,”
IEEE
International Conference on Systems, Man and Cybernetics
, Washington, DC, Oct. 5–8, pp.
1122
1129
.
44.
Ryu
,
J.
, and
Cha
,
J.
,
2003
, “
Volumetric Error Analysis and Architecture Optimization for Accuracy of HexaSlide Type Parallel Manipulators
,”
Mech. Mach. Theory
,
38
(
3
), pp.
227
240
.
45.
Gosselin
,
C. M.
,
2002
, “
Dexterity Indices for Planar and Spatial Robotic Manipulators
,”
IEEE
International Conference on Robotics and Automation
, Cincinnati, OH, May 13–18, pp.
650
655
.
46.
Lou
,
Y.
,
Liu
,
G.
, and
Li
,
Z.
,
2008
, “
Randomized Optimal Design of Parallel Manipulators
,”
IEEE Trans. Autom. Sci. Eng.
,
5
(
2
), pp.
223
233
.
47.
Bai
,
S.
,
2010
, “
Optimum Design of Spherical Parallel Manipulators for a Prescribed Workspace
,”
Mech. Mach. Theory
,
45
(
2
), pp.
200
211
.
48.
Fattah
,
A.
, and
Ghasemi
,
A. M. H.
,
2002
, “
Isotropic Design of Spatial Parallel Manipulators
,”
Int. J. Rob. Res.
,
21
(
9
), pp.
811
826
.
49.
Klein
,
C. A.
, and
Blaho
,
B. E.
,
1987
, “
Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators
,”
Int. J. Rob. Res.
,
6
(
2
), pp.
72
83
.
50.
Kim
,
J. O.
, and
Khosla
,
K.
,
2002
, “
Dexterity Measures for Design and Control of Manipulators
,”
IEEE/RSJ International Workshop on Intelligent Robots and Systems '91
(
IROS
), Intelligence for Mechanical Systems, Osaka, Japan, Nov. 3–5, pp.
758
763
.
You do not currently have access to this content.