Despite the tremendous effort of researchers and manufacturing engineers in improving the predictability of the air bending process, there is still a strong need for comprehensive and dependable prediction models. Currently, available modeling approaches all present some relevant limitations in practical applications. In this paper, we propose a new method, which represents an improvement over all existing modeling and prediction techniques. The proposed method can be used for accurate prediction of the main response variables of the air bending process: the angle α after springback and the bend deduction BD. The metamodeling method is based on the hierarchical fusion of different kinds of data: the deterministic low-fidelity response of numerical finite element method (FEM) simulations and the stochastic high fidelity response of experimental tests. The metamodel has been built over a very large database, unprecedented in the scientific literature on air bending, made of more than 500 numerical simulations and nearly 300 experimental tests. The fusion is achieved first by interpolating the FEM simulations with a kriging predictor; then, the hierarchical metamodel is built as a linear regression model of the experimental data, using the kriging predictor among the regressors. The accuracy of the method has been proved using a variant of the leave-one-out cross validation technique. The quality of the prediction yielded by the proposed method significantly over-performs the current prediction of the press brake on-line numerical control.

References

References
1.
Yang
,
X.
,
Choi
,
C.
,
Sever
,
N. K.
, and
Altan
,
T.
,
2016
, “
Prediction of Springback in Air-Bending of Advanced High Strength Steel (DP780) Considering Young's Modulus Variation and With a Piecewise Hardening Function
,”
Int. J. Mech. Sci.
,
105
, pp.
266
272
.
2.
Kim
,
H.
,
Nargundkar
,
N.
, and
Altan
,
T.
,
2007
, “
Prediction of Bend Allowance and Springback in Air Bending
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
342
351
.
3.
Yang
,
M.
,
Manabe
,
K.-I.
, and
Nishimura
,
H.
,
1996
, “
Development of Real-Time Process Control System for Precision and Flexible V-Bending With an On-Line Database
,”
J. Mater. Process. Technol.
,
60
(
1–4
), pp.
249
254
.
4.
De Vin
,
L. J.
,
2000
, “
Curvature Prediction in Air Bending of Metal Sheet
,”
J. Mater. Process. Technol.
,
100
(
1–3
), pp.
257
261
.
5.
Wang
,
J.
,
Verma
,
S.
,
Alexander
,
R.
, and
Gau
,
J.-T.
,
2008
, “
Springback Control of Sheet Metal Air Bending Process
,”
J. Manuf. Process.
,
10
(
1
), pp.
21
27
.
6.
De Vin
,
L. J.
,
Streppel
,
A. H.
,
Singh
,
U. P.
, and
Kals
,
H. J. J.
,
1996
, “
A Process Model for Air Bending
,”
J. Mater. Process. Technol.
,
57
(
1–2
), pp.
48
54
.
7.
West
,
J. S.
,
1980
, “
Adaptive Stroke Reversal Control in Brakeforming
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
8.
Kwok
,
S. K.
, and
Lee
,
W. B.
,
1995
, “
The Development of a Machine Vision System for Adaptive Bending of Sheet Metals
,”
J. Mater. Process. Technol.
,
48
(
1–4
), pp. 43–49.
9.
Elkins
,
K. L.
, and
Sturges
,
R. H.
,
1999
, “
Springback Analysis and Control in Small Radius Air Bending
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
679
688
.
10.
Raghupathi
,
P. S.
,
Karima
,
M.
,
Akgerman
,
N.
, and
Altan
,
T.
,
1983
, “
A Simplified Approach to Calculate Springback in Brake Bending
,”
NAMRC XI
, Madison, WI, pp.
165
170
.
11.
Benson
,
S. D.
,
1997
,
Press Brake Technology: A Guide to Precision Sheet Metal Bending
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
12.
DIN,
2011
, “
Cold Bending of Flat Rolled Steel
,” German Institute for Standardisation, Berlin, Standard No. DIN 6935(2011–10).
13.
Gary Harlow
,
D.
,
2004
, “
The Effect of Statistical Variability in Material Properties on Springback
,”
Int. J. Mater. Prod. Technol.
,
20
(
1/2/3
), pp.
180
192
.
14.
Lin
,
Z.-C.
, and
Chang
,
D.-Y.
,
1996
, “
Application Model in of a Neural Network Machine Learning the Selection System of Sheet Metal Bending Tooling
,”
Artif. Intell. Eng.
,
10
(
1
), pp.
21
37
.
15.
Leu
,
D.-K.
,
1997
, “
A Simplified Approach for Evaluating Bendability and Springback in Plastic Bending of Anisotropic Sheet Metals
,”
J. Mater. Process. Technol.
,
66
(
1–3
), pp.
9
17
.
16.
Yilamu
,
K.
,
Hino, R.
,
Hamasaki, H.
, and
Yoshida, F.
,
2010
, “
Air Bending and Springback of Stainless Steel Clad Aluminum Sheet
,”
J. Mater. Process. Technol.
,
210
(
2
), pp.
272
278
.
17.
Wiebenga
,
J. H.
,
Boogaard
,
A. H.
, and
Klaseboer
,
G.
,
2012
, “
Sequential Robust Optimization of a V-Bending Process Using Numerical Simulations
,”
Struct. Multidiscip. Optim.
,
46
(
1
), pp.
137
153
.
18.
Hasser
,
P. J.
,
Malik
,
A. S.
,
Langer
,
K.
,
Spradlin
,
T. J.
, and
Hatamleh
,
M. I.
,
2016
, “
An Efficient Reliability-Based Simulation Method for Optimum Laser Peening Treatment
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111001
.
19.
Kennedy
,
M. O.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.
20.
Colosimo
,
B. M.
,
Pagani
,
L.
, and
Strano
,
M.
,
2015
, “
Reduction of Calibration Effort in FEM-Based Optimization Via Numerical and Experimental Data Fusion
,”
Struct. Multidiscip. Optim.
,
51
(
2
), pp.
463
478
.
21.
Cioppa
,
T. M.
, and
Lucas
,
T. W.
,
2007
, “
Efficient Nearly Orthogonal and Space-Filling Latin Hypercubes
,”
Technometrics
,
49
(
1
), pp.
45
55
.
22.
Kleijnen
,
J. P. C.
,
2009
, “
Kriging Metamodeling in Simulation: A Review
,”
Eur. J. Oper. Res.
,
192
(
3
), pp.
707
716
.
23.
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2003
, “
A Study on the Use of Kriging Models to Approximate Deterministic Computer Models
,”
ASME
Paper No. DETC2003/DAC-48762.
24.
Simpson
,
T.
,
Toropov
,
V.
,
Balabanov
,
V.
, and
Viana
,
F.
,
2008
, “
Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come or Not
,”
AIAA
Paper No. AIAA 2008-5802.
25.
Traub
,
T.
, and
Groche
,
P.
,
2015
, “
Experimental and Numerical Determination of the Required Initial Sheet Width in Die Bending
,”
Key Eng. Mater.
,
639
, pp.
147
154
.
26.
Huang
,
L.-K.
, and
Wang
,
M.-J. J.
,
1995
, “
Image Thresholding by Minimizing the Measures of Fuzziness
,”
Pattern Recognit.
,
28
(
1
), pp.
41
51
.
27.
Montgomery
,
Douglas
,
C.
,
Peck
,
E. A.
, and
Vining
,
G. G.
,
2015
,
Introduction to Linear Regression Analysis
,
Wiley
, Hoboken, NJ.
28.
Krstajic
,
D.
,
Buturovic
,
L. J.
,
Leahy
,
D. E.
, and
Thomas
,
S.
,
2014
, “
Cross-Validation Pitfalls When Selecting and Assessing Regression and Classification Models
,”
J. Cheminform.
,
6
(
1
), p.
10
.
You do not currently have access to this content.