Titanium and its alloys are widely used in structural applications owing to superior mechanical properties and corrosion resistance. In the present study, a simple powder metallurgy-based process is developed to fabricate dense components through formation of dough under ambient condition using Ti6Al4V powder along with chitosan powder as dough forming additive and acetic acid as solvent. The prepared samples had ∼66±1.7% green density and 97.3±2.1% sintered density of the theoretical value. The microstructure of Ti6Al4V was investigated using scanning electron microscopy (SEM) combined with energy-dispersive X-ray (EDX) spectroscopy. Micro-CT analysis was carried out for distribution of defects and their influence on flexural strength and microhardness was assessed as well. The prepared green samples had uniform particle distribution that resulted in minimum deformation after sintering. Assessment of mechanical properties revealed that the values of hardness and flexural modulus for sintered samples were comparable to the reported values of Ti6Al4V components prepared using other process. Therefore, the developed method of dough forming for dense titanium components using powder metallurgy route is a simple and viable alternative.

References

References
1.
Guo
,
S.
,
Duan
,
B.
,
He
,
X.
, and
Qu
,
X.
,
2009
, “
Powder Injection Molding of Pure Titanium
,”
Rare Met.
,
28
(
3
), pp.
261
265
.
2.
Rack
,
H.
, and
Qazi
,
J.
,
2006
, “
Titanium Alloys for Biomedical Applications
,”
Mater. Sci. Eng. C
,
26
(
8
), pp.
1269
1277
.
3.
Niinomi
,
M.
,
2003
, “
Recent Research and Development in Titanium Alloys for Biomedical Applications and Healthcare Goods
,”
Sci. Tech. Adv. Mater
,
4
(
5
), p.
445
.
4.
Saha
,
R. L.
, and
Jacob
,
K. T.
,
2014
, “
Casting of Titanium and Its Alloys
,”
Def. Sci. J.
,
36
(
2
), pp.
121
141
.
5.
Kahles
,
J. F.
,
Field
,
M.
,
Eylon
,
D.
, and
Froes
,
F. H.
,
1985
, “
Machining of Titanium Alloys
,”
JOM
,
37
(
4
), pp.
27
35
.
6.
Zhang
,
L. C.
, and
Attar
,
H.
,
2016
, “
Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review
,”
Adv. Eng. Mater.
,
18
(
4
), pp.
463
475
.
7.
Ezugwu
,
E. O.
, and
Wang
,
Z. M.
,
1997
, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Process. Technol.
,
68
(
3
), pp.
262
274
.
8.
Machado
,
A. R.
, and
Wallbank
,
J.
,
1990
, “
Machining of Titanium and Its Alloys—A Review
,”
Proc. Inst. Mech. Eng., Part B
,
204
(
1
), pp.
53
60
.
9.
Hartung
,
P. D.
,
Kramer
,
B. M.
, and
Von Turkovich
,
B. F.
,
1982
, “
Tool Wear in Titanium Machining
,”
CIRP Ann. Manuf. Technol.
,
31
(
1
), pp.
75
80
.
10.
Nguyen
,
T.
,
Kwon
,
P.
,
Kang
,
D.
, and
Bieler
,
T. R.
,
2016
, “
The Origin of Flank Wear in Turning Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121013
.
11.
German
,
R. M.
,
1994
,
Powder Metallurgy Science
,
Metal Powder Industries Federation
,
Princeton, NJ
, p.
279
.
12.
Baumeister
,
J.
,
1990
, “
Method for Producing Porous Metal Bodies
,”
German Patent DE
40 18 360.
13.
da Silva
,
F. C.
,
Kazmierczak
,
K.
,
da Costa
,
C. E.
,
Milan
,
J. C. G.
, and
Torralba
,
J. M.
,
2017
, “
Zamak 2 Alloy Produced by Mechanical Alloying and Consolidated by Sintering and Hot Pressing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091011
.
14.
Li
,
E. K. H.
, and
Funkenbusch
,
P. D.
,
1993
, “
Hot Isostatic Pressing (HIP) of Powder Mixtures and Composites: Packing, Densification, and Microstructural Effects
,”
Metall. Mater. Trans. A
,
24
(
6
), pp.
1345
1354
.
15.
Radulović
,
J.
,
2015
, “
Powder Injection Moulding Technology: Properties, Possibilities and Starting Activities
,”
Sci. Tech. Rev.
,
65
(
2
), pp.
20
28
.
16.
Wiech
,
R. E.
, Jr.
,
1980
, “
Manufacture of Parts From Particulate Material
,” Parmatech Corporation, Petaluma, CA, U.S. Patent No.
4,197,118A
.https://patents.google.com/patent/US4197118
17.
Sidambe
,
A. T.
,
Figueroa
,
I. A.
,
Hamilton
,
H. G. C.
, and
Todd
,
I.
,
2012
, “
Metal Injection Moulding of CP-Ti Components for Biomedical Applications
,”
J. Mater. Process. Technol.
,
212
(
7
), pp.
1591
1597
.
18.
German
,
R. M.
,
1990
,
Powder Injection Molding
,
Metal Powder Industries Federation
,
Princeton, NJ
, pp.
124
127
.
19.
Janney
,
M. A.
, and
Omatete
,
O. O.
,
1991
, “
Method for Molding Ceramic Powders Using a Water-Based Gel Casting
,” U.S. Patent No.
5,028,362A
.https://patents.google.com/patent/US5028362A/en
20.
Dhara
,
S.
, and
Bhargava
,
P.
,
2005
, “
Influence of Nature and Amount of Dispersant on Rheology of Aged Aqueous Alumina Gelcasting Slurries
,”
J. Am. Ceram. Soc.
,
88
(
3
), pp.
547
552
.
21.
Dhara
,
S.
, and
Bhargava
,
P.
,
2001
, “
Egg White as an Environmentally Friendly Low‐Cost Binder for Gelcasting of Ceramics
,”
J. Am. Ceram. Soc.
,
84
(
12
), pp.
3048
3050
.
22.
Wang
,
F.
,
Jiang
,
K.
, and
Xu
,
X.
,
2009
, “
Gel Casting of 316 L Stainless Steel Powder Through Mold DIS Process
,”
Tsinghua Sci. Technol.
,
14
(
S1
), pp.
216
222
.
23.
Kapat
,
K.
,
Srivas
,
P. K.
, and
Dhara
,
S.
,
2017
, “
Coagulant Assisted Foaming—A Method for Cellular Ti6Al4V: Influence of Microstructure on Mechanical Properties
,”
Mater. Sci. Eng. A
,
689
, pp.
63
71
.
24.
Kapat
,
K.
,
Srivas
,
P. K.
,
Rameshbabu
,
A. P.
,
Maity
,
P. P.
,
Jana
,
S.
,
Dutta
,
J.
,
Majumdar
,
P.
,
Chakrabarti
,
D.
, and
Dhara
,
S.
,
2017
, “
Influence of Porosity and Pore Size Distribution in Ti6Al4V Foam on Physicomechanical Properties, Osteogenesis and Quantitative Validation of Bone Ingrowth by Micro-CT
,”
ACS Appl. Mater. Interfaces
,
9
(
45
), pp.
39235
39248
.
25.
Long
,
M.
, and
Rack
,
H. J.
,
1998
, “
Titanium Alloys in Total Joint Replacement—A Materials Science Perspective
,”
Biomaterials
,
19
(
18
), pp.
1621
1639
.
26.
Tanveer
,
A.
,
Marla
,
D.
, and
Kapoor
,
S. G.
,
2016
, “
A Thermal Model to Predict Tool Temperature in Machining of Ti-6Al-4V Alloy With an Atomization-Based Cutting Fluid Spray System
,”
ASME
Paper No. MSEC2016-8595.
27.
Narutaki
,
N.
,
Murakoshi
,
A.
,
Motonishi
,
S.
, and
Takeyama
,
H.
,
1983
, “
Study on Machining of Titanium Alloys
,”
CIRP Ann. Manuf. Technol.
,
32
(
1
), pp.
65
69
.
28.
Rahman
,
M.
,
San Wong
,
Y.
, and
Zareena
,
A. R.
,
2003
, “
Machinability of Titanium Alloys
,”
JSME Int. J. Ser. C
,
46
(
1
), pp.
107
115
.
29.
Che-Haron
,
C. H.
, and
Jawaid
,
A.
,
2005
, “
The Effect of Machining on Surface Integrity of Titanium Alloy Ti–6% Al–4% V
,”
J. Mater. Process. Technol.
,
166
(
2
), pp.
188
192
.
30.
Hong
,
S. Y.
,
Markus
,
I.
, and
Jeong
,
W. C.
,
2001
, “
New Cooling Approach and Tool Life Improvement in Cryogenic Machining of Titanium Alloy Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2245
2260
.
31.
Zhang
,
X.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2016
, “
Chip Fracture Behavior in the High Speed Machining of Titanium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081001
.
32.
Srivas
,
P. K.
,
Kapat
,
K.
, and
Dhara
,
S.
,
2016
, “
Process of Dough Forming of Polymer-Metal Blend Suitable for Shape Forming
,” Indian Institutes of Technology, Chennai, India, U.S. Patent No.
US20160136728A1
.https://patents.google.com/patent/US20160136728A1/en
33.
Teng
,
W. D.
,
Edirisinghe
,
M. J.
, and
Evans
,
J. R.
,
1997
, “
Optimization of Dispersion and Viscosity of a Ceramic Jet Printing Ink
,”
J. Am. Ceram. Soc.
,
80
(
2
), pp.
486
494
.
34.
Dealy
,
J. M.
, and
Wang
,
J.
,
2013
,
Melt Rheology and Its Applications in the Plastics Industry
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
35.
Chhabra
,
R. P.
, and
Uhlherr
,
P. H. T.
,
1979
, “
Estimation of Zero-Shear Viscosity of Polymer Solutions From Falling Sphere Data
,”
Rheol. Acta
,
18
(
5
), pp.
593
599
.
36.
Ramosoeu
,
M. E.
,
Chikwanda
,
H. K.
,
Bolokang
,
A. S.
,
Booysen
,
G.
, and
Ngonda
,
T. N.
,
2010
, “
Additive Manufacturing: Characterization of Ti-6Al-4V Alloy Intended for Biomedical Application
,”
Light Metals Conference
, Johannesburg, South Africa, Oct. 27–29, pp.
337
344
.
37.
Smolarczyk
,
P.
,
Łukaszewicz
,
A.
,
Szota
,
M.
,
Nabiałek
,
M.
, and
Bukowska
,
A.
,
2013
, “
Comparison of Mechanical Properties of Ti-6Al-4V Titanium Alloy Produced by the Conventional Method and the Injection
,”
J. Achiev. Mater. Manuf. Eng.
,
61
(
2
), pp.
281
288
.https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-b44f01a6-0d73-4f80-91ca-fe83f022b2ba
38.
Hertzberg
,
R. W.
,
1989
,
Deformation and Fracture Mechanics of Engineering Materials
, Wiley, New York.
39.
Yoder
,
G. R.
,
Cooley
,
L. A.
, and
Crooker
,
T. W.
,
1977
, “
Observations on Microstructurally Sensitive Fatigue Crack Growth in a Widmanstätten Ti-6Al-4V Alloy
,”
Metall. Mater. Trans. A
,
8
(
11
), pp.
1737
1743
.
40.
Pineau
,
A.
,
Benzerga
,
A. A.
, and
Pardoen
,
T.
,
2016
, “
Failure of Metals—I: Brittle and Ductile Fracture
,”
Acta Mater.
,
107
, pp.
424
483
.
41.
Dinda
,
G. P.
,
Song
,
L.
, and
Mazumder
,
J.
,
2008
, “
Fabrication of Ti-6Al-4V Scaffolds by Direct Metal Deposition
,”
Metall. Mater. Trans. A
,
39
(
12
), pp.
2914
2922
.
42.
Shibo
,
G.
,
Xuanhui
,
Q.
,
Xinbo
,
H.
,
Ting
,
Z.
, and
Bohua
,
D.
,
2006
, “
Powder Injection Molding of Ti–6Al–4V Alloy
,”
J. Mater. Process. Technol.
,
173
(
3
), pp.
310
314
.
43.
Poondla
,
N.
,
Srivatsan
,
T. S.
,
Patnaik
,
A.
, and
Petraroli
,
M.
,
2009
, “
A Study of the Microstructure and Hardness of Two Titanium Alloys: Commercially Pure and Ti–6Al–4V
,”
J. Alloys Compd.
,
486
(
1–2
), pp.
162
167
.
44.
Niinomi
,
M.
,
1998
, “
Mechanical Properties of Biomedical Titanium Alloys
,”
Mater. Sci. Eng. A
,
243
(
1–2
), pp.
231
236
.
You do not currently have access to this content.