The Ti–6Al–4V is a widely used alloy in the aerospace industry. In order to improve the grindability of Ti–6Al–4V, a hybrid material removal process is proposed in this study. This process is a combination of ultrasonic assisted grinding (UAG) and electrochemical grinding (ECG), hereafter called ultrasonic assisted electrochemical grinding (UAECG). For confirming the feasibility of the proposed technique, an experimental setup was constructed and the fundamental machining characteristics of UAECG in the grinding of Ti–6Al–4V were experimentally investigated. The results obtained from the investigation can be summarized as follows: (1) the normal and tangential forces in UAECG were decreased approximately 57% and 56%, respectively, comparing with conventional grinding (CG). (2) The work-surface roughness Ra both in ECG and UAECG was negative correlation to the electrolytic voltage, UI, and the surface damage; (3) the wheel radius wear in UAECG was considerably smaller than that in ECG when UI < 10 V. The chip adhesion and the grain fracture mainly affected the working lives of the wheels in ECG and UAECG, whereas the wheel wear in CG was predominantly attributed to the grain drop out; (4) a titanium dioxide (TiO2) layer, which had a 78 nm thickness was achieved on the work surface in the condition of UI = 20 V, leading that the Vickers microhardness of work surface in ultrasonic assisted electrochemical was lower than that in CG by 15%.

References

References
1.
Mia
,
M.
, and
Dhar
,
N. R.
,
2018
, “
Effects of Duplex Jets High-Pressure Coolant on Machining Temperature and Machinability of Ti–6Al–4V Superalloy
,”
J. Mater. Process. Technol.
,
252
, pp.
688
696
.
2.
Hong
,
S. Y.
,
Markus
,
I.
, and
Jeong
,
W.-C.
,
2001
, “
New Cooling Approach and Tool Life Improvement in Cryogenic Machining of Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
41
, pp.
2245
2260
.
3.
Ezugwu
,
E. O.
, and
Wang
,
Z. M.
,
1997
, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Process. Technol.
,
68
(
3
), pp.
262
273
.
4.
Rowe
,
W. B.
,
2017
, “
Temperatures in Grinding—A Review
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121001
.
5.
Thakur
,
A.
, and
Gangopadhyay
,
S.
,
2016
, “
State-of-the-Art in Surface Integrity in Machining of Nickel-Based Super Alloys
,”
Int. J. Mach. Tools Manuf.
,
100
, pp.
25
54
.
6.
Ezugwu
,
E. O.
,
2005
, “
Key Improvements in the Machining of Difficult-to-Cut Aerospace Superalloys
,”
Int. J. Mach. Tools Manuf.
,
45
(
12–13
), pp.
1353
1367
.
7.
Setti
,
D.
,
Sinha
,
M. K.
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2015
, “
Performance Evaluation of Ti–6Al–4V Grinding Using Chip Formation and Coefficient of Friction Under the Influence of Nanofluids
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
237
248
.
8.
Sun
,
S.
,
Brandt
,
M.
, and
Dargusch
,
M. S.
,
2010
, “
Machining Ti–6Al–4V Alloy With Cryogenic Compressed Air Cooling
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
933
942
.
9.
Bermingham
,
M. J.
,
Palanisamy
,
S.
,
Kent
,
D.
, and
Dargusch
,
M. S.
,
2012
, “
A Comparison of Cryogenic and High Pressure Emulsion Cooling Technologies on Tool Life and Chip Morphology in Ti–6Al–4V Cutting
,”
J. Mater. Process. Technol.
,
212
(
4
), pp.
752
765
.
10.
Palanisamy
,
S.
,
McDonald
,
S. D.
, and
Dargusch
,
M. S.
,
2009
, “
Effects of Coolant Pressure on Chip Formation While Turning Ti6Al4V Alloy
,”
Int. J. Mach. Tools Manuf.
,
49
(
9
), pp.
739
743
.
11.
Dandekar
,
C. R.
,
Shin
,
Y. C.
, and
Barnes
,
J.
,
2010
, “
Machinability Improvement of Titanium Alloy (Ti–6Al–4V) Via LAM and Hybrid Machining
,”
Int. J. Mach. Tools Manuf.
,
50
(
2
), pp.
174
182
.
12.
Ilhan
,
R. E.
,
Sathyanaryanan
,
G.
,
Storer
,
R. H.
, and
Liao
,
T. W.
,
1992
, “
Off-Line Multiresponse Optimization of Electrochemical Surface Grinding by a Multi-Objective Programming Method
,”
Int. J. Mach. Tools Manuf.
,
32
(
3
), pp.
435
451
.
13.
Nirala
,
C. K.
,
Unune
,
D. R.
, and
Sankhla
,
H. K.
,
2017
, “
Virtual Signal-Based Pulse Discrimination in Micro-Electro-Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
094501
.
14.
Tehrani
,
A. F.
, and
Atkinson
,
J.
,
2000
, “
Overcut in Pulsed Electrochemical Grinding
,”
Proc. Inst. Mech. Eng., Part B
,
214
(
4
), pp.
259
268
.
15.
Zaborski
,
S.
,
Łupak
,
M.
, and
Poroś
,
D.
,
2004
, “
Wear of Cathode in Abrasive Electrochemical Grinding of Hardly Machined Materials
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
414
418
.
16.
Sapre
,
P.
,
Mall
,
A.
, and
Joshi
,
S. S.
,
2013
, “
Analysis of Electrolytic Flow Effects in Micro-Electrochemical Grinding
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p. 011012.
17.
Rajurkar
,
K. P.
,
Zhu
,
D.
,
McGeough
,
J. A.
,
Kozak
,
J.
, and
De Silva
,
A.
,
1999
, “
New Developments in Electro-Chemical Machining
,”
CIRP Ann.—Manuf. Technol.
,
48
(
2
), pp.
567
578
.
18.
Roy
,
S.
,
Bhattacharyya
,
A.
, and
Banerjee
,
S.
,
2007
, “
Analysis of Effect of Voltage on Surface Texture in Electrochemical Grinding by Autocorrelation Function
,”
Tribol. Int.
,
40
(
9
), pp.
1387
1392
.
19.
Pei
,
Z. J.
, and
Ferreira
,
P. M.
,
1998
, “
Modeling of Ductile-Mode Material Removal in Rotary Ultrasonic Machining
,”
Int. J. Mach. Tools Manuf.
,
38
(10–11), pp.
1399
1418
.
20.
Nik
,
M. G.
,
Movahhedy
,
M. R.
, and
Akbari
,
J.
,
2012
, “
Ultrasonic-Assisted Grinding of Ti6Al4V Alloy
,”
Procedia CIRP
,
1
, pp.
353
358
.
21.
Pujana
,
J.
,
Rivero
,
A.
,
Celaya
,
A.
, and
de Lacalle
,
L. N. L.
,
2009
, “
Analysis of Ultrasonic-Assisted Drilling of Ti6Al4V
,”
Int. J. Mach. Tools Manuf.
,
49
(
6
), pp.
500
507
.
22.
Qin
,
N.
,
Pei
,
Z. J.
,
Treadwell
,
C.
, and
Guo
,
D. M.
,
2009
, “
Physics-Based Predictive Cutting Force Model in Ultrasonic-Vibration-Assisted Grinding for Titanium Drilling
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p. 041011.
23.
Xiao
,
X.
,
Zheng
,
K.
,
Liao
,
W.
, and
Meng
,
H.
,
2016
, “
Study on Cutting Force Model in Ultrasonic Vibration Assisted Side Grinding of Zirconia Ceramics
,”
Int. J. Mach. Tools Manuf.
,
104
, pp.
58
67
.
24.
Zheng
,
J. X.
, and
Xu
,
J. W.
,
2006
, “
Experimental Research on the Ground Surface Quality of Creep Feed Ultrasonic Grinding Ceramics (Al2O3)
,”
Chin. J. Aeronaut.
,
19
(
4
), pp.
359
365
.
25.
Mult
,
H.
,
Spur
,
G.
, and
Holl
,
S.
,
1996
, “
Ultrasonic Assisted Grinding of Ceramics
,”
J. Mater. Process. Technol.
,
62
(
4
), pp.
287
293
.
26.
Klecka
,
M.
, and
Subhash
,
G.
,
2008
, “
Grain Size Dependence of Scratch-Induced Damage in Alumina Ceramics
,”
Wear
,
265
(
5–6
), pp.
612
619
.
27.
Farhadi
,
A.
,
Abdullah
,
A.
,
Zarkoob
,
J.
, and
Pak
,
A.
,
2010
, “
Analytical and Numerical Simulation of Ultrasonic Assisted Grinding
,”
ASME
Paper No. ESDA2010-25049.
28.
Lee
,
T.
, and
Chan
,
C.
,
1997
, “
Mechanism of the Ultrasonic Machining of Ceramic Composites
,”
J. Mater. Process. Technol.
,
71
(
2
), pp.
195
201
.
29.
Zhang
,
X.
,
Huang
,
R.
,
Liu
,
K.
,
Kumar
,
A. S.
, and
Deng
,
H.
,
2018
, “
Suppression of Diamond Tool Wear in Machining of Tungsten Carbide by Combining Ultrasonic Vibration and Electrochemical Processing
,”
Ceram. Int.
,
44
(
4
), pp.
4142
4153
.
30.
Ruszaj
,
A.
,
Skoczypiec
,
S.
, and
Wyszyński
,
D.
,
2017
, “
Recent Developments in Abrasive Hybrid Manufacturing Processes
,”
Manage. Prod. Eng. Rev.
,
8
(
2
), pp.
81
90
.
31.
Monteiro
,
S. N.
,
Skury
,
A. L. D.
,
de Azevedo
,
M. G.
, and
Bobrovnitchii
,
G. S.
,
2013
, “
Cubic Boron Nitride Competing With Diamond as a Superhard Engineering Material—An Overview
,”
J. Mater. Res. Technol.
,
2
(
1
), pp.
68
74
.
32.
Dai
,
J.
,
Ding
,
W.
,
Zhang
,
L.
,
Xu
,
J.
, and
Su
,
H.
,
2015
, “
Understanding the Effects of Grinding Speed and Undeformed Chip Thickness on the Chip Formation in High-Speed Grinding
,”
Int. J. Adv. Manuf. Technol.
,
81
(
5–8
), pp.
995
1005
.
33.
Marinescu
,
I. D.
,
Hitchiner
,
M. P.
,
Uhlmann
,
E.
,
Rowe
,
W. B.
, and
Inasak
,
I.
,
2006
,
Handbook of Machining With Grinding Wheels
,
CRC Press, Boca Raton, FL
, p.
632
.
34.
Tao
,
Z.
,
Yaoyao
,
S.
,
Laakso
,
S.
, and
Jinming
,
Z.
,
2017
, “
Investigation of the Effect of Grinding Parameters on Surface Quality in Grinding of TC4 Titanium Alloy
,”
Procedia Manuf.
,
11
, pp.
2131
2138
.
35.
Arunachalam
,
R. M.
,
Mannan
,
M. A.
, and
Spowage
,
A. C.
,
2004
, “
Surface Integrity When Machining Age Hardened Inconel 718 With Coated Carbide Cutting Tools
,”
Int. J. Mach. Tools Manuf.
,
44
(
14
), pp.
1481
1491
.
36.
Wu
,
Y. B.
,
Nomura
,
M.
,
Feng
,
Z. J.
, and
Kato
,
M.
,
2004
, “
Modeling of Grinding Force in Constant-Depth-of-Cut Ultrasonically Assisted Grinding
,”
Mater. Sci. Forum
,
471–472
, pp.
101
107
.
37.
Zwilling
,
V.
,
Aucouturier
,
M.
, and
Darque-Ceretti
,
E.
,
1999
, “
Anodic Oxidation of Titanium and TA6V Alloy in Chromic Media. An Electrochemical Approach
,”
Electrochim. Acta
,
45
, pp.
921
930
.
38.
Jamshidi
,
H.
, and
Nategh
,
M. J.
,
2013
, “
Theoretical and Experimental Investigation of the Frictional Behavior of the Tool–Chip Interface in Ultrasonic-Vibration Assisted Turning
,”
Int. J. Mach. Tools Manuf.
,
65
, pp.
1
7
.
39.
Alawadhi
,
E. M.
,
2013
, “
Numerical Simulation of Fluid Flow Past an Oscillating Triangular Cylinder in a Channel
,”
ASME J. Fluids Eng.
,
135
(
4
), p. 041202.
40.
Shaw
,
M. C.
,
1996
,
Principles of Abrasive Processing
,
Bookcraft (Bath) Ltd
.,
Midsomer Norton, Great Britain
.
41.
Druzhinin
,
O. A.
,
1994
, “
Concentration Waves and Flow Modification in a Particle-Laden Circular Vortex
,”
Phys. Fluids
,
6
(
10
), pp.
3276
3284
.
42.
Bellanger
,
G.
, and
Rameau
,
J. J.
,
2015
, “
Tritium Recovery From Tritiated Water by Electrolysis
,”
Fusion Sci. Technol.
,
36
(
3
), pp.
296
308
.
43.
Uhlmann, E.
, and
Spur, G.
, 1998, “
Surface Formation in Creep Feed Grinding of Advanced Ceramics With and Without Ultrasonic Assistance
,”
CIRP Annals
,
47
(1), pp. 249–252.
44.
Singh
,
K. K.
,
Kartik
,
V.
, and
Singh
,
R.
,
2015
, “
Modeling Dynamic Stability in High-Speed Micromilling of Ti–6Al–4V Via Velocity and Chip Load Dependent Cutting Coefficients
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
56
66
.
You do not currently have access to this content.