Steel SUS420J1, which is the key material of turbine blade, is generally treated by heat to improve the strength prior to use. And the austenization process at different heating rates would determine the depth and width of heat treatment. In this paper, the austenization temperatures in heat treatment with the heat from induction wire, infrared lamp, and laser are measured, respectively. The effect of heating rate on the austenization temperature has been investigated. The research results show that the measured austenization temperature increases with the heating rate. And this trend is specially enlarged in the heat treatment method with larger gradient of temperature distribution, e.g., laser. The calculated phase transformation threshold shows that negative linear relationship exists between the logarithmic heating rate and the logarithmic austenization threshold for both induction heating and infrared heating, while abnormal relationship exists for laser heating. Thermal finite element analysis (FEA) models are then developed to calculate the temperature distributions in these three heating methods, and the calculated results show that the nonuniform temperature distribution leads to the gap between the measured austenization temperature and that of the material, which also leads to the abnormal variation law of austenization threshold in laser heating. The measured austenization temperature in induction heating method is thought to be the closest to the actual austenization temperature of the material among these three methods. This paper provides a guide for choosing the proper parameters to heat the steel SUS420J1 in hardening.

References

References
1.
Köse
,
C.
, and
Kaçar
,
R.
,
2014
, “
The Effect of Preheat & Post Weld Heat Treatment on the Laser Weldability of AISI 420 Martensitic Stainless Steel
,”
Mater. Des.
,
64
, pp.
221
226
.
2.
Isfahany
,
A. N.
,
Saghafian
,
H.
, and
Borhani
,
G.
,
2011
, “
The Effect of Heat Treatment on Mechanical Properties and Corrosion Behavior of AISI420 Martensitic Stainless Steel
,”
J. Alloys Compd.
,
509
(
9
), pp.
3931
3936
.
3.
Sharifi
,
H.
,
Kheirollahi-Hosseinabadi
,
I.
, and
Ghasemi
,
R.
,
2013
, “
The Effect of Tempering Treatment on the Microstructure and Mechanical Properties of DIN 1.4021 Martensitic Stainless Steel
,”
Int. J. ISSI
,
12
(1), pp.
9
15
.
4.
Chandravathi
,
K.
,
Sasmal
,
C.
,
Laha
,
K.
,
Parameswaran
,
P.
,
Nandagopal
,
M.
,
Vijayanand
,
V.
,
Mathew
,
M.
,
Jayakumar
,
T.
, and
Kumar
,
E. R.
,
2013
, “
Effect of Isothermal Heat Treatment on Microstructure and Mechanical Properties of Reduced Activation Ferritic Martensitic Steel
,”
J. Nucl. Mater.
,
435
(
1–3
), pp.
128
136
.
5.
Calliari
,
I.
,
Breda
,
M.
,
Ramous
,
E.
,
Magrini
,
M.
, and
Straffelini
,
G.
,
2013
, “
Effect of Isothermal Heat Treatments on Duplex Stainless Steels Impact Toughness
,”
XXII Convegno Nazionale IGF-Acta Fracturae
, Gruppo Italiano Frattura, Cassino, Italy, p.
56
.
6.
Song
,
Y. Y.
,
Park
,
K.-S.
,
Bhadeshia
,
H.
, and
Suh
,
D.-W.
,
2014
, “
Austenite in Transformation-Induced Plasticity Steel Subjected to Multiple Isothermal Heat Treatments
,”
Metall. Mater. Trans. A
,
45
(
10
), pp.
4201
4209
.
7.
Brytan
,
Z.
, and
Niagaj
,
J.
, 2013, “
Effect of Isothermal Heat Treatment at 650, 750 and 850°C on the Microstructures of Lean Duplex Stainless Steel S32101 Welds
,”
Chiang Mai J. Sci.
,
40
(5), pp. 874–885.
8.
Rudnev
,
V.
,
Cook
,
R.
,
Loveless
,
D.
, and
Black
,
M.
,
1997
, “
Steel Heat Treatment Handbook, Steel Heat Treatment
,” Marcel Dekker Inc., New York.
9.
Ran
,
Q.
,
Xu
,
Y.
,
Li
,
J.
,
Wan
,
J.
,
Xiao
,
X.
,
Yu
,
H.
, and
Jiang
,
L.
,
2014
, “
Effect of Heat Treatment on Transformation-Induced Plasticity of Economical Cr19 Duplex Stainless Steel
,”
Mater. Des.
,
56
, pp.
959
965
.
10.
Apreutesei
,
M.
,
Billard
,
A.
, and
Steyer
,
P.
,
2015
, “
Crystallization and Hardening of Zr-40at.% Cu Thin Film Metallic Glass: Effects of Isothermal Annealing
,”
Mater. Des.
,
86
, pp.
555
563
.
11.
Salman
,
S.
,
Fındık
,
F.
, and
Topuz
,
P.
,
2007
, “
Effects of Various Austempering Temperatures on Fatigue Properties in Ductile Iron
,”
Mater. Des.
,
28
(
7
), pp.
2210
2214
.
12.
Liang
,
S.
,
Yin
,
L.
,
Zheng
,
L.
,
Ma
,
M.
, and
Liu
,
R.
,
2016
, “
The Microstructural Evolution and Grain Growth Kinetics of TZ20 Alloy During Isothermal Annealing
,”
Mater. Des.
,
99
, pp.
396
402
.
13.
Berggren
,
K.
, and
Stiele
,
H.
,
2012
, “
Induction Heating: A Guide to the Process and Its Benefits
,”
Gear Solutions
,
7
, pp.
40
46
.
14.
Schmidt
,
F.
,
Le Maoult
,
Y.
, and
Monteix
,
S.
,
2003
, “
Modelling of Infrared Heating of Thermoplastic Sheet Used in Thermoforming Process
,”
J. Mater. Process. Technol.
,
143–144
, pp.
225
231
.
15.
Fortunato
,
A.
,
Ascari
,
A.
,
Liverani
,
E.
,
Orazi
,
L.
, and
Cuccolini
,
G.
,
2013
, “
A Comprehensive Model for Laser Hardening of Carbon Steels
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061002
.
16.
Liu
,
Y.
,
Zhu
,
J. C.
,
Zhou
,
Y.
, and
Zhang
,
Y. M.
,
2015
, “
Austenization Dynamics of 17-4PH Steel During Continuous Heating Process
,”
J. Iron Steel Res.
,
27
(
10
), pp.
63
66
.
17.
Li
,
H.
,
Gai
,
K.
,
He
,
L.
,
Zhang
,
C.
,
Cui
,
H.
, and
Li
,
M.
,
2016
, “
Non-Isothermal Phase-Transformation Kinetics Model for Evaluating the Austenization of 55CrMo Steel Based on Johnson–Mehl–Avrami Equation
,”
Mater. Des.
,
92
, pp.
731
741
.
18.
Ning
,
B. Q.
,
Yan
,
Z. S.
,
Fu
,
J. C.
,
Bie
,
L. J.
, and
Liu
,
Y. C.
,
2009
, “
Effect of Heating Rate on the Austenization Process of T91 Ferritic Heat-Resistant Steel
,”
Mater. Sci. Technol.
,
17
(
3
), pp.
329
332
.
19.
Liu
,
G.
,
Li
,
J.
,
Zhang
,
S.
,
Wang
,
J.
, and
Meng
,
Q.
,
2016
, “
Dilatometric Study on the Recrystallization and Austenization Behavior of Cold-Rolled Steel With Different Heating Rates
,”
J. Alloys Compd.
,
666
, pp.
309
316
.
20.
Li
,
P.
,
Li
,
J.
,
Meng
,
Q.
,
Hu
,
W.
, and
Xu
,
D.
,
2013
, “
Effect of Heating Rate on Ferrite Recrystallization and Austenite Formation of Cold-Roll Dual Phase Steel
,”
J. Alloys Compd.
,
578
, pp.
320
327
.
21.
Oliveira
,
F. L. G.
,
Andrade
,
M. S.
, and
Cota
,
A. B.
,
2007
, “
Kinetics of Austenite Formation During Continuous Heating in a Low Carbon Steel
,”
Mater. Charact.
,
58
(
3
), pp.
256
261
.
22.
Steel Eagle Commerce, 2011, “
Stainless Steel grade AISI 420: Database of Steel Eagle Commerce Ltd
,” Steel Eagle Commerce Ltd., Gżira, Malta, accessed Jan. 31, 2018, www.steeleaglemalta.com
23.
Andersson
,
J.-O.
,
Helander
,
T.
,
Höglund
,
L.
,
Shi
,
P.
, and
Sundman
,
B.
,
2002
, “
Thermo-Calc & DICTRA, Computational Tools for Materials Science
,”
Calphad
,
26
(
2
), pp.
273
312
.
24.
Esin
,
V. A.
,
Denand
,
B.
,
Le Bihan
,
Q.
,
Dehmas
,
M.
,
Teixeira
,
J.
,
Geandier
,
G.
,
Denis
,
S.
,
Sourmail
,
T.
, and
Aeby-Gautier
,
E.
,
2014
, “
In Situ Synchrotron X-Ray Diffraction and Dilatometric Study of Austenite Formation in a Multi-Component Steel: Influence of Initial Microstructure and Heating Rate
,”
Acta Mater.
,
80
, pp.
118
131
.
25.
Bénéteau
,
A.
,
Weisbecker
,
P.
,
Geandier
,
G.
,
Aeby-Gautier
,
E.
, and
Appolaire
,
B.
,
2005
, “
Austenitization and Precipitate Dissolution in High Nitrogen Steels: An In Situ High Temperature X-Ray Synchrotron Diffraction Analysis Using the Rietveld Method
,”
Mater. Sci. Eng.: A
,
393
(
1–2
), pp.
63
70
.
26.
Avrami
,
M.
,
1939
, “
Kinetics of Phase Change—I: General Theory
,”
J. Chem. Phys.
,
7
(
12
), pp.
1103
1112
.
27.
Lakhkar
,
R. S.
,
Shin
,
Y. C.
, and
Krane
,
M. J. M.
,
2008
, “
Predictive Modeling of Multi-Track Laser Hardening of AISI 4140 Steel
,”
Mater. Sci. Eng. A
,
480
(
1–2
), pp.
209
217
.
28.
Wang
,
H.
,
Zhang
,
Y.
, and
Chen
,
K.
, 2016, “
Modeling of Temperature Distribution in Laser Welding of Lapped Martensitic Steel M1500 and Softening Estimation
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111006
.
29.
Bojack
,
A.
,
Zhao
,
L.
,
Morris
,
P.
, and
Sietsma
,
J.
,
2014
, “
In Situ Thermo-Magnetic Investigation of the Austenitic Phase During Tempering of a 13Cr6Ni2Mo Supermartensitic Stainless Steel
,”
Metall. Mater. Trans. A
,
45
(
13
), pp.
5956
5967
.
30.
Wang
,
H.
,
Zhang
,
Y.
, and
Lai
,
X.
,
2015
, “
Effects of Interfaces on Heat Transfer in Laser Welding of Electrical Steel Laminations
,”
Int. J. Heat Mass Transfer
,
90
, pp.
665
677
.
31.
Tu
,
Z.
,
Mao
,
J.
,
Jiang
,
H.
,
Han, X.
, and
He, Z.
,
2017
, “
Numerical Method for the Thermal Analysis of a Ceramic Matrix Composite Turbine Vane Considering the Spatial Variation of the Anisotropic Thermal Conductivity
,”
Appl. Therm. Eng.
,
127
, pp.
436
452
.
32.
Singh
,
S.
,
Sørensen
,
K.
, and
Condra
,
T. J.
,
2016
, “
Influence of the Degree of Thermal Contact in Fin and Tube Heat Exchanger: A Numerical Analysis
,”
Appl. Therm. Eng.
,
107
, pp.
612
624
.
33.
Wang
,
J.-T.
,
Weng
,
C.-I.
,
Chang
,
J.-G.
, and
Hwang
,
C.-C.
,
2000
, “
The Influence of Temperature and Surface Conditions on Surface Absorptivity in Laser Surface Treatment
,”
J. Appl. Phys.
,
87
(
7
), pp.
3245
3253
.
34.
Wang
,
H.
,
Kawahito
,
Y.
,
Yoshida
,
R.
,
Nakashima
,
Y.
, and
Shiokawa
,
K.
,
2018
, “
A Model to Calculate the Laser Absorption Property of Actual Surface
,”
Int. J. Heat Mass Transfer
,
118
, pp.
562
569
.
35.
Howell
,
J. R.
,
Menguc
,
M. P.
, and
Siegel
,
R.
,
2010
,
Thermal Radiation Heat Transfer
,
CRC Press
, Boca Raton, FL.
36.
MatWeb, 2018, “
MatWeb: Material Property Data for SUS420J1
,” MatWeb, LLC, Blacksburg, VA, accessed Jan. 31, 2018, http://www.matweb.com/index.aspx
37.
Russell
,
A.
,
2014
,
A Treatise on the Theory of Alternating Currents
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.