Laser engineered net shaping (LENS) has become a promising technology in direct manufacturing or repairing of high-performance metal parts. Investigations on LENS manufacturing of Inconel 718 (IN718) parts have been conducted for potential applications in the aircraft turbine component manufacturing or repairing. Fabrication defects, such as pores and heterogeneous microstructures, are inevitably induced in the parts, affecting part qualities and mechanical properties. Therefore, it is necessary to investigate a high-efficiency LENS process for the high-quality IN718 part fabrication. Ultrasonic vibration has been implemented into various melting material solidification processes for part performance improvements. However, there is a lack of studies on the utilization of ultrasonic vibration in LENS process for IN718 part manufacturing. In this paper, ultrasonic vibration-assisted (UV-A) LENS process is, thus, proposed to fabricate IN718 parts for the potential reduction of fabrication defects. Experimental investigations are conducted to study the effects of ultrasonic vibration on microstructures and mechanical properties of LENS-fabricated parts under two levels of laser power. The results showed that ultrasonic vibration could reduce the mean porosity to 0.1%, refine the microstructure with an average grain size of 5 μm, and fragment the detrimental Laves precipitated phase into small particles in a uniform distribution, thus enhancing yield strength, ultimate tensile strength (UTS), microhardness, and wear resistance of the fabricated IN718 parts.

References

1.
Zhong
,
C. L.
,
Gasser
,
A.
,
Kittel
,
J.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2016
, “
Improvement of Material Performance of Inconel 718 Formed by High Deposition-Rate Laser Metal Deposition
,”
Mater. Des.
,
98
, pp.
128
134
.
2.
Jia
,
Q. B.
, and
Gu
,
D. D.
,
2014
, “
Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties
,”
J. Alloy. Compd.
,
585
, pp.
713
721
.
3.
Li
,
S. S.
,
Wu
,
Y. B.
,
Fujimoto
,
M.
, and
Nomura
,
M.
,
2016
, “
Improving the Working Surface Condition of Electroplated Cubic Boron Nitride Grinding Quill in Surface Grinding of Inconel 718 by the Assistance of Ultrasonic Vibration
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
071008
.
4.
Irwin
,
J.
,
Reutzel
,
E. W.
,
Michaleris
,
P.
,
Keist
,
J.
, and
Nassar
,
A. R.
,
2016
, “
Predicting Microstructure From Thermal History During Additive Manufacturing for Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111007
.
5.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
6.
Gu
,
D. D.
,
Cao
,
S. N.
, and
Lin
,
K. J.
,
2017
, “
Laser Metal Deposition Additive Manufacturing of TiC Reinforced Inconel 625 Composites: Influence of the Additive TiC Particle and Its Starting Size
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041014
.
7.
Thomas
,
D. S.
, and
Gilbert
,
S. W.
,
2014
, “Costs and Cost Effectiveness of Additive Manufacturing: A Literature Review and Discussion,” National Institute of Standards and Technology, Gaithersburg, MD, Publication No.
1176
.
8.
Laureijs
,
R. E.
,
Roca
,
J. B.
,
Narra
,
S. P.
,
Montgomery
,
C.
,
Beuth
,
J. L.
, and
Fuchs
,
E. R.
,
2017
, “
Metal Additive Manufacturing: Cost Competitive Beyond Low Volumes
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081010
.
9.
Parimi
,
L. L.
,
Ravi
,
G. A.
,
Clark
,
D.
, and
Attallah
,
M. M.
,
2014
, “
Microstructural and Texture Development in Direct Laser Fabricated IN718
,”
Mater. Charact.
,
89
, pp.
102
111
.
10.
Tabernero
,
I.
,
Lamikiz
,
A.
,
Martínez
,
S.
,
Ukar
,
E.
, and
Figueras
,
J.
,
2011
, “
Evaluation of the Mechanical Properties of Inconel 718 Components Built by Laser Cladding
,”
Int. J. Mach. Tool. Manu
,
51
(
6
), pp.
465
470
.
11.
Liu
,
F. C.
,
Lin
,
X.
,
Yang
,
G. L.
,
Song
,
M. H.
,
Chen
,
J.
, and
Huang
,
W. D.
,
2011
, “
Microstructure and Residual Stress of Laser Rapid Formed Inconel 718 Nickel-Base Superalloy
,”
Opt. Laser Technol.
,
43
(
1
), pp.
208
213
.
12.
Zhao
,
X.
,
Chen
,
J.
,
Lin
,
X.
, and
Huang
,
W.
,
2008
, “
Study on Microstructure and Mechanical Properties of Laser Rapid Forming Inconel 718
,”
Mat. Sci. Eng. A
,
478
(
1–2
), pp.
119
124
.
13.
Qi
,
H.
,
Azer
,
M.
, and
Ritter
,
A.
,
2009
, “
Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured Inconel 718
,”
Metall. Mater. Trans. A
,
40
(
10
), pp.
2410
2422
.
14.
Lambarri
,
J.
,
Leunda
,
J.
,
Navas
,
V. G.
,
Soriano
,
C.
, and
Sanz
,
C.
,
2013
, “
Microstructural and Tensile Characterization of Inconel 718 Laser Coatings for Aeronautic Components
,”
Opt. Laser. Eng
,
51
(
7
), pp.
813
821
.
15.
Yang
,
Y.
, and
Li
,
X. C.
,
2007
, “
Ultrasonic Cavitation-Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
252
255
.
16.
Cao
,
G. P.
,
Konishi
,
H.
, and
Li
,
X. C.
,
2008
, “
Mechanical Properties and Microstructure of Mg/SiC Nanocomposites Fabricated by Ultrasonic Cavitation Based Nanomanufacturing
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031105
.
17.
Sun
,
Q. J.
,
Lin
,
S. B.
,
Yang
,
C. L.
, and
Zhao
,
G. Q.
,
2009
, “
Penetration Increase of AISI 304 Using Ultrasonic Assisted Tungsten Inert Gas Welding
,”
Sci. Technol. Weld. Joining
,
14
(
8
), pp.
765
767
.
18.
Watanabe
,
T.
,
Shiroki
,
M.
,
Yanagisawa
,
A.
, and
Sasaki
,
T.
,
2010
, “
Improvement of Mechanical Properties of Ferritic Stainless Steel Weld Metal by Ultrasonic Vibration
,”
J. Mater. Process. Tech
,
210
(
12
), pp.
1646
1651
.
19.
Yang
,
M. X.
,
Zheng
,
H.
,
Qi
,
B. J.
, and
Yang
,
Z.
,
2017
, “
Microstructure and Fatigue Property of Ti–6Al–4V by Ultrahigh Frequency Pulse Welding
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041015
.
20.
Komarov
,
S. V.
,
Kuwabara
,
M.
, and
Abramov
,
O. V.
,
2005
, “
High Power Ultrasonics in Pyrometallurgy: Current Status and Recent Development
,”
ISIJ Int.
,
45
(
12
), pp.
1765
1782
.
21.
Ning
,
F. D.
, and
Cong
,
W. L.
,
2016
, “
Microstructures and Mechanical Properties of Fe-Cr Stainless Steel Parts Fabricated by Ultrasonic Vibration-Assisted Laser Engineered Net Shaping Process
,”
Mater. Lett.
,
179
, pp.
61
64
.
22.
Cong
,
W. L.
, and
Ning
,
F. D.
,
2017
, “
A Fundamental Investigation on Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Stainless Steel
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
61
69
.
23.
Wu
,
D. J.
,
Guo
,
M. H.
,
Ma
,
G. Y.
, and
Niu
,
F. Y.
,
2015
, “
Dilution Characteristics of Ultrasonic Assisted Laser Clad Yttria-Stabilized Zirconia Coating
,”
Mater. Lett.
,
141
, pp.
207
209
.
24.
Yan
,
S.
,
Wu
,
D. J.
,
Niu
,
F. Y.
,
Ma
,
G. Y.
, and
Kang
,
R. K.
,
2017
, “
Al2O3-ZrO2 Eutectic Ceramic Via Ultrasonic-Assisted Laser Engineered Net Shaping
,”
Ceram. Int.
,
43
(
17
), pp.
15905
15910
.
25.
ASTM
,
2013
, “Standard Test Methods for Determining Average Grain Size,” ASTM International, West Conshohocken, PA, Standard No.
ASTM E112-13
.
26.
ASTM
,
2009
, “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM International, West Conshohocken, PA, Standard No.
ASTM E8/E8M-09
.
27.
Xu
,
H.
,
Jian
,
X.
,
Meek
,
T. T.
, and
Han
,
Q.
,
2004
, “
Degassing of Molten Aluminum A356 Alloy Using Ultrasonic Vibration
,”
Mater. Lett.
,
58
(
29
), pp.
3669
3673
.
28.
Shao
,
S.
,
Mahtabi
,
M. J.
,
Shamsaei
,
N.
, and
Thompson
,
S. M.
,
2017
, “
Solubility of Argon in Laser Additive Manufactured α-Titanium Under Hot Isostatic Pressing Condition
,”
Comput. Mater. Sci.
,
131
, pp.
209
219
.
29.
Wang
,
F.
,
Eskin
,
D.
,
Mi
,
J.
,
Connolley
,
T.
,
Lindsay
,
J.
, and
Mounib
,
M.
,
2016
, “
A Refining Mechanism of Primary Al3Ti Intermetallic Particles by Ultrasonic Treatment in the Liquid State
,”
Acta. Mater.
,
116
, pp.
354
363
.
30.
Chen
,
R. R.
,
Zheng
,
D. S.
,
Ma
,
T. F.
,
Ding
,
H. S.
,
Su
,
Y. Q.
,
Guo
,
J. J.
, and
Fu
,
H. Z.
,
2017
, “
Effects of Ultrasonic Vibration on the Microstructure and Mechanical Properties of High Alloying TiAl
,”
Sci. Rep.
,
7
, pp.
41463
41477
.
31.
Gäumann
,
M.
,
Bezencon
,
C.
,
Canalis
,
P.
, and
Kurz
,
W.
,
2001
, “
Single-Crystal Laser Deposition of Superalloys: Processing-Microstructure Maps
,”
Acta. Mater.
,
49
(
6
), pp.
1051
1062
.
32.
Liu
,
F.
,
Lin
,
X.
,
Leng
,
H.
,
Cao
,
J.
,
Liu
,
Q.
,
Huang
,
C.
, and
Huang
,
W.
,
2013
, “
Microstructural Changes in a Laser Solid Forming Inconel 718 Superalloy Thin Wall in the Deposition Direction
,”
Opt. Laser Technol.
,
45
, pp.
330
335
.
33.
Wang
,
Z.
,
Guan
,
K.
,
Gao
,
M.
,
Li
,
X.
,
Chen
,
X.
, and
Zeng
,
X.
,
2012
, “
The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting
,”
J. Alloy. Compd.
,
513
, pp.
518
523
.
You do not currently have access to this content.