Dramatic advancements and adoption of computing capabilities, communication technologies, and advanced, pervasive sensing have impacted every aspect of modern manufacturing. Furthermore, as society explores the Fourth Industrial Revolution characterized by access to and leveraging of knowledge in the manufacturing enterprise, the very character of manufacturing is rapidly evolving, with new, more complex processes, and radically, new products appearing in both the industries and academe. As for traditional manufacturing processes, they are also undergoing transformations in the sense that they face ever-increasing requirements in terms of quality, reliability, and productivity, needs that are being addressed in the knowledge domain. Finally, across all manufacturing we see the need to understand and control interactions between various stages of any given process, as well as interactions between multiple products produced in a manufacturing system. All these factors have motivated tremendous advancements in methodologies and applications of control theory in all aspects of manufacturing: at process and equipment level, manufacturing systems level, and operations level. Motivated by these factors, the purpose of this paper is to give a high-level overview of latest progress in process and operations control in modern manufacturing. Such a review of relevant work at various scales of manufacturing is aimed not only to offer interested readers information about state-of-the art in control methods and applications in manufacturing, but also to give researchers and practitioners a vision about where the direction of future research may be, especially in light of opportunities that lay as one concurrently looks at the process, system and operation levels of manufacturing.

References

References
1.
Roth
,
J. T.
,
Djurdjanovic
,
D.
,
Yang
,
X.
,
Mears
,
L.
, and
Kurfess
,
T.
,
2010
, “
Quality and Inspection of Machining Operations: Tool Condition Monitoring
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), p.
041015
.
2.
Koren
,
Y.
,
1988
, “
Adaptive Control Systems for Machining
,”
American Control Conference
(
ACC
), Atlanta, GA, June 15–17, pp.
1161
1167
.
3.
Landers
,
R. G.
,
Ulsoy
,
A. G.
, and
Ma
,
Y.
,
2004
, “
A Comparison of Model-Based Machining Force Control Approaches
,”
Int. J. Mach. Tools Manuf.
,
44
(
7
), pp.
733
748
.
4.
Landers
,
R. G.
, and
Ulsoy
,
A. G.
,
2000
, “
Model-Based Machining Force Control
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
3
), pp.
521
527
.
5.
Shawky
,
A.
, and
Elbestawi
,
M.
,
1998
, “
Model-Based Predictive Control of Workpiece Accuracy in bar Turning
,”
ASME J. Manuf. Sci. Eng.
,
120
(
1
), pp.
57
67
.
6.
Denkena
,
B.
, and
Flöter
,
F.
,
2012
, “
Adaptive Cutting Force Control on a Milling Machine With Hybrid Axis Configuration
,”
Procedia CIRP
,
4
, pp.
109
114
.
7.
Toutant
,
R.
,
Balakrishnan
,
S.
,
Onyshka
,
S.
, and
Popplewell
,
N.
,
1993
, “
Feedrate Compensation for Constant Cutting Force Turning
,”
IEEE Control Syst.
,
13
(
6
), pp.
44
47
.
8.
Landers
,
R.
,
Ulsoy
,
A. G.
, and
Furness
,
R.
,
2002
, “
Process Monitoring and Control of Machining Operations
,”
The Mechanical Systems Design Handbook
,
O.
Nwokah
and
Y.
Hurmuzlu
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
85
104
.
9.
MachineDesign, 2010, “
Adaptive Control in Machining
,” Penton, London, accessed Feb. 2, 2017, http://machinedesign.com/sensors/adaptive-control-machining
10.
Caron Engineering, 2017, “
Tool Monitoring Adaptive Control
,” Caron Engineering, Wells, Maine, accessed Feb. 2, 2017, https://www.caroneng.com/products/tmac-mp
11.
Omative, 2017, “
Adaptive Control & Monitoring
,” OMAT, Cincinnati, OH, accessed Feb. 2, 2017, http://omative.com/adaptive-control-monitoring
12.
Soraluce, 2017, “
Adaptive Control: Optimum Performance Under Control
,” Soraluce, Bergara, Spain, accessed Feb. 2, 2017, http://www.milling-boring-machines.com/adaptive-control-optimum-performance-under-control
13.
Bort
,
C. M. G.
,
Leonesio
,
M.
, and
Bosetti
,
P.
,
2016
, “
A Model-Based Adaptive Controller for Chatter Mitigation and Productivity Enhancement in CNC Milling Machines
,”
Rob. Comput. Integr. Manuf.
,
40
(
C
), pp.
34
43
.
14.
Jamaludin
,
Z.
,
Jamaludin
,
J.
,
Chiew
,
T.
,
Abdullah
,
L.
,
Rafan
,
N.
, and
Maharof
,
M.
,
2016
, “
Sustainable Cutting Process for Milling Operation Using Disturbance Observer
,”
Procedia CIRP
,
40
, pp.
486
491
.
15.
Liu
,
X.
,
Ding
,
Y.
,
Yue
,
C.
,
Zhang
,
R.
, and
Tong
,
X.
,
2016
, “
Off-Line Feedrate Optimization With Multiple Constraints for Corner Milling of a Cavity
,”
Int. J. Adv. Manuf. Technol.
,
82
(
9–12
), pp.
1899
1907
.
16.
Behera
,
B. C.
,
Chetan
,
S. G.
, and
Rao
,
P. V.
,
2014
, “
Effects on Forces and Surface Roughness During Machining Inconel 718 Alloy Using Minimum Quantity Lubrication
,”
Fifth International and 26th All India Manufacturing Technology, Design and Research Conference
(AIMTDR), Assam, India, Dec. 12–14, Paper No.
116
.
17.
Lim
,
Y.
,
Venugopal
,
R.
, and
Ulsoy
,
A. G.
,
2014
, “
Auto-Tuning and Adaptive Control
,”
Process Control for Sheet-Metal Stamping
,
Y.
Lim
,
R.
Venugopal
, and
A. G.
Ulsoy
, eds.,
Springer
, London, pp.
87
107.
18.
Pin
,
G.
,
Francesconi
,
V.
,
Cuzzola
,
F.
, and
Parisini
,
T.
,
2013
, “
Adaptive Task-Space Metal Strip-Flatness Control in Cold Multi-Roll Mill Stands
,”
J. Process Control
,
23
(
2
), pp.
108
119
.
19.
Tommerup
,
S.
, and
Endelt
,
B.
,
2012
, “
Experimental Verification of a Deep Drawing Tool System for Adaptive Blank Holder Pressure Distribution
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2529
2540
.
20.
Davis
,
T. A.
,
Shin
,
Y. C.
, and
Yao
,
B.
,
2011
, “
Observer-Based Adaptive Robust Control of Friction Stir Welding Axial Force
,”
IEEE/ASME Trans. Mechatronics
,
16
(
6
), pp.
1032
1039
.
21.
Gibson
,
B.
,
Cook
,
G.
,
Prater
,
T.
,
Longhurst
,
W.
,
Strauss
,
A.
, and
Cox
,
C.
,
2011
, “
Adaptive Torque Control of Friction Stir Welding for the Purpose of Estimating Tool Wear
,”
Proc. Inst. Mech. Eng. Part B
,
225
(8), pp.
1293
1303
.
22.
Boddu
,
M. R.
,
Landers
,
R. G.
, and
Liou
,
F. W.
,
2001
, “
Control of Laser Cladding for Rapid Prototyping—A Review
,” Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 6–8, pp.
460
467
.
23.
Liu
,
W.
,
Tang
,
Z.
,
Liu
,
X.
,
Wang
,
H.
, and
Zhang
,
H.
,
2017
, “
A Review on In-Situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing
,”
24th CIRP Conference on Life Cycle Engineering
, Kamakura, Japan, Mar. 8–10, pp.
235
240
.
24.
Williamson
,
R. L.
, and
Beaman
,
J. J.
,
2012
, “
Modern Control Theory Applied to Remelting of Superalloys
,”
Seventh International Conference on Processing and Manufacturing of Advanced Materials
, Quebec City, QC, Canada, Aug. 1–5, pp.
2484
2489.
25.
Garg
,
A.
,
Tai
,
K.
, and
Savalani
,
M. M.
,
2014
, “
State-of-the-Art in Empirical Modelling of Rapid Prototyping Processes
,”
Rapid Prototyping J.
,
20
(
2
), pp.
164
178
.
26.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), pp.
1
10
.
27.
Jeng
,
J.
,
Peng
,
S.
, and
Chou
,
C.
,
2000
, “
Metal Rapid Prototype Fabrication Using Selective Laser Cladding Technology
,”
Int. J. Adv. Manuf. Technol.
,
16
(
9
), pp.
681
687
.
28.
Amine
,
T.
,
Newkirk
,
J. W.
, and
Liou
,
F.
,
2014
, “
An Investigation of the Effect of Direct Metal Deposition Parameters on the Characteristics of the Deposited Layers
,”
Case Stud. Therm. Eng.
,
3
, pp.
21
34
.
29.
Zhao
,
X.
,
Landers
,
R.
, and
Leu
,
M.
,
2010
, “
Adaptive Extrusion Force Control of Freeze-Form Extrusion Fabrication Processes
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
064504
.
30.
Boddu
,
M. R.
,
Musti
,
S.
,
Landers
,
R. G.
,
Agarwal
,
S.
, and
Liou
,
F. W.
,
2001
, “
Empirical Modeling and Vision Based Control for Laser Aided Metal Deposition Process
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 6–8, pp.
452
459
.
31.
Kruth
,
J.-P.
,
Duflou
,
J.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
,
Craeghs
,
T.
, and
Keuster
,
J. D.
,
2007
, “
On-Line Monitoring and Process Control in Selective Laser Melting and Laser Cutting
,”
Fifth Lane Conference, Laser Assisted Net Shape Engineering
, Erlangen, Germany, Sept. 25–28, pp.
23
37
.
32.
Xiong
,
J.
, and
Zhang
,
G.
,
2014
, “
Adaptive Control of Deposited Height in GMAW-Based Layer Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
4
), pp.
962
968
.
33.
Ohnishi
,
K.
,
1987
, “
A New Servo Method in Mechatronics
,”
Trans. Jpn. Soc. Electr. Eng.
,
107
(
D
), pp.
83
86
.
34.
Huang
,
W.
,
Liu
,
C.
,
Hsu
,
P.
, and
Yeh
,
S.
,
2010
, “
Precision Control and Compensation of Servomotors and Machine Tools Via the Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
57
(
1
), pp.
420
429
.
35.
Yeh
,
S.
, and
Su
,
H.
,
2011
, “
Development of Friction Identification Methods for Feed Drives of CNC Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
52
(
1–4
), pp.
263
278
.
36.
Li
,
P.
,
Zhu
,
G.
,
Gong
,
S.
,
Huang
,
Y.
, and
Yue
,
L.
,
2016
, “
Synchronization Control of Dual-Drive System in Gantry-Type Machine Tools Based on Disturbance Observer
,” 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (
MESA
), Auckland, New Zealand, Aug. 29–31, pp.
1
7
.
37.
Chen
,
C.
, and
Cheng
,
M.
,
2012
, “
Adaptive Disturbance Compensation and Load Torque Estimation for Speed Control of a Servomechanism
,”
Int. J. Mach. Tools Manuf.
,
59
, pp.
6
15
.
38.
Corapsiz
,
M. F.
, and
Erenturk
,
K.
,
2016
, “
Trajectory Tracking Control and Contouring Performance of Three-Dimensional CNC
,”
IEEE Trans. Ind. Electron.
,
63
(
4
), pp.
2212
2220
.
39.
Bui
,
B. D.
, and
Uchiyama
,
N.
,
2016
, “
Sliding Mode Contouring Controller Design With Adaptive Friction Compensation for Three-Axis Machine Tools
,” American Control Conference (
ACC
), Boston, MA, July 6–8, pp.
2217
2222
.
40.
Uchiyama
,
N.
, and
Sano
,
S.
,
2013
, “
Sliding Mode Contouring Control Design Using Nonlinear Sliding Surface for Three-Dimensional Machining
,”
Int. J. Mach. Tools Manuf.
,
65
, pp.
8
14
.
41.
Sencer
,
B.
, and
Shamoto
,
E.
,
2014
, “
Effective Torque Ripple Compensation in Feed Drive Systems Based on the Adaptive Sliding-Mode Controller
,”
IEEE/ASME Trans. Mechatronics
,
19
(
6
), pp.
1764
1772
.
42.
Li
,
X.
,
Zhao
,
H.
,
Zhao
,
X.
, and
Ding
,
H.
,
2016
, “
Dual Sliding Mode Contouring Control With High Accuracy Contour Error Estimation for Five-Axis CNC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
108
, pp.
74
82
.
43.
Xi
,
X.
,
Zhao
,
W.
, and
Poo
,
A.
,
2015
, “
Improving CNC Contouring Accuracy by Robust Digital Integral Sliding Mode Control
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
51
61
.
44.
Zhou
,
P.
,
Dai
,
W.
, and
Chai
,
T.
,
2014
, “
Multivariable Disturbance Observer Based Advanced Feedback Control Design and Its Application to a Grinding Circuit
,”
IEEE Trans. Control Syst. Technol.
,
22
(
4
), pp.
1474
1485
.
45.
Yang
,
J.
,
Li
,
A.
,
Chen
,
X.
, and
Li
,
Q.
,
2010
, “
Disturbance Rejection of Ball Mill Grinding Circuits Using DOB and MPC
,”
Powder Technol.
,
198
(
2
), pp.
219
228
.
46.
Dewantoro
,
G.
,
2013
, “
Fuzzy Sliding Mode Control for Enhancing Injection Velocity Performance in Injection Molding Machine
,”
Int. J. Artif. Intell.
,
10
(
S13
), pp.
75
87
.
47.
Song
,
L.
, and
Mazumder
,
J.
,
2011
, “
Feedback Control of Melt Pool Temperature During Laser Cladding Process
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1349
1356
.
48.
Song
,
L.
,
Bagavath-Singh
,
V.
,
Dutta
,
B.
, and
Mazumder
,
J.
,
2012
, “
Control of Melt Pool Temperature and Deposition Height During Direct Metal Deposition Process
,”
Int. J. Adv. Manuf. Technol.
,
58
(
1–4
), pp.
247
256
.
49.
Wang
,
Z.
,
Li
,
J.
,
Wang
,
J.
,
Zhang
,
F.
, and
Zhao
,
L.
,
2013
, “
Active Disturbance Rejection Control for Electro-Hydraulic Servo System of Aluminum Strip Cold Rolling Mill
,”
32
nd
IEEE Chinese Control Conference
(
CCC
), Xi'an, China, July 26–28, pp. 974–979.
50.
Zheng
,
Q.
, and
Gao
,
Z.
,
2012
, “
An Energy Saving, Factory-Validated Disturbance Decoupling Control Design for Extrusion Processes
,”
Ten
th
IEEE World Congress on Intelligent Control and Automation
(
WCICA
), Beijing, China, July 6–8, pp. 2891–2896.
51.
Fathi
,
A.
,
Khajepour
,
A.
,
Durali
,
M.
, and
Toyserkani
,
E.
,
2008
, “
Geometry Control of the Deposited Layer in a Nonplanar Laser Cladding Process Using a Variable Control Structure
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), pp.
1
11
.
52.
Zeinali
,
M.
, and
Khajepour
,
A.
,
2010
, “
Height Control in Laser Cladding Using Adaptive Sliding Mode Technique: Theory and Experiment
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), pp.
1
10
.
53.
Zomorodi
,
H.
, and
Landers
,
R. G.
,
2016
, “
Extrusion Based Additive Manufacturing Using Explicit Model Predictive Control
,” American Control Conference (
ACC
), Boston, MA, July 6–8, pp.
1747
1752
.
54.
Yang
,
S.
,
Ghasemi
,
A. H.
,
Lu
,
X.
, and
Okwudire
,
C. E.
,
2015
, “
Pre-Compensation of Servo Contour Errors Using a Model Predictive Control Framework
,”
Int. J. Mach. Tools Manuf.
,
98
, pp.
50
60
.
55.
Zhang
,
K.
,
Yuen
,
A.
, and
Altintas
,
Y.
,
2013
, “
Pre-Compensation of Contour Errors in Five-Axis CNC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
74
, pp.
1
11
.
56.
Lam
,
D.
,
Manzie
,
C.
, and
Good
,
M. C.
,
2013
, “
Model Predictive Contouring Control for Biaxial Systems
,”
IEEE Trans. Control Syst. Technol.
,
21
(
2
), pp.
552
559
.
57.
Stephens
,
M. A.
,
Manzie
,
C.
, and
Good
,
M. C.
,
2013
, “
Model Predictive Control for Reference Tracking on an Industrial Machine Tool Servo Drive
,”
IEEE Trans. Ind. Inf.
,
9
(
2
), pp.
808
816
.
58.
Tang
,
L.
, and
Landers
,
R. G.
,
2012
, “
Predictive Contour Control With Adaptive Feed Rate
,”
IEEE/ASME Trans. Mechatronics
,
17
(
4
), pp.
669
679
.
59.
Conway
,
J. R.
,
Ernesto
,
C. A.
,
Farouki
,
R. T.
, and
Zhang
,
M.
,
2012
, “
Performance Analysis of Cross-Coupled Controllers for CNC Machines Based Upon Precise Real-Time Contour Error Measurement
,”
Int. J. Mach. Tools Manuf.
,
52
(
1
), pp.
30
39
.
60.
Stemmler
,
S.
,
Abel
,
D.
,
Adams
,
O.
, and
Klocke
,
F.
,
2016
, “
Model Predictive Feed Rate Control for a Milling Machine
,”
IFAC Papers Online
,
49
(
12
), pp.
11
16
.
61.
Peng
,
Y.
,
Wang
,
J.
, and
Wei
,
W.
,
2014
, “
Model Predictive Control of Servo Motor Driven Constant Pump Hydraulic System in Injection Molding Process Based on Neurodynamic Optimization
,”
J. Zhejiang Univ. Sci. C
,
15
(
2
), pp.
139
146
.
62.
Reiter
,
M.
,
Stemmler
,
S.
,
Hopmann
,
C.
,
Reßmann
,
A.
, and
Abel
,
D.
,
2014
, “
Model Predictive Control of Cavity Pressure in an Injection Moulding Process
,”
IFAC Proc. Vol.
,
47
(
3
), pp.
4358
4363
.
63.
Coetzee
,
L. C.
,
Craig
,
I. K.
, and
Kerrigan
,
E. C.
,
2010
, “
Robust Nonlinear Model Predictive Control of a Run-of-Mine Ore Milling Circuit
,”
IEEE Trans. Control Syst. Technol.
,
18
(
1
), pp.
222
229
.
64.
Olivier
,
L. E.
, and
Craig
,
I. K.
,
2013
, “
Model-Plant Mismatch Detection and Model Update for a Run-of-Mine Ore Milling Circuit Under Model Predictive Control
,”
J. Process Control
,
23
(
2
), pp.
100
107
.
65.
Salazar
,
J.
,
Valdés-González
,
H.
,
Vyhmesiter
,
E.
, and
Cubillos
,
F.
,
2014
, “
Model Predictive Control of Semiautogenous Mills (Sag)
,”
Miner. Eng.
,
64
, pp.
92
96
.
66.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2015
, “A Model Predictive Repetitive Process Control Formulation for Additive Manufacturing Processes,”
ASME
Paper No. DSCC2015-9780.
67.
Cao
,
X.
, and
Ayalew
,
B.
,
2015
, “
Multivariable Predictive Control of Laser-Aided Powder Deposition Processes
,” American Control Conference (
ACC
), Chicago, IL, July 1–3, pp.
3625
3630
.
68.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2013
, “
Iterative Learning Control of Bead Morphology in Laser Metal Deposition Processes
,” American Control Conference (
ACC
), Washington, DC, June 17–19, pp.
5942
5947
.
69.
Tang
,
L.
,
Ruan
,
J.
,
Sparks
,
T. E.
,
Landers
,
R. G.
, and
Liou
,
F.
,
2009
, “
Layer-to-Layer Height Control of Laser Metal Deposition Processes
,” American Control Conference (
ACC
), St. Louis, MO, June 10–12, pp.
5582
5587
.
70.
Christiansson
,
A.
, and
Lennartson
,
B.
,
2012
, “
Height Control of Laser Metal-Wire Deposition Based on Iterative Learning Control and 3D Scanning
,”
Opt. Lasers Eng.
,
50
(
9
), pp.
1230
1241
.
71.
Boisselier
,
D.
,
Sankaré
,
S.
, and
Engel
,
T.
,
2014
, “
Improvement of the Laser Direct Metal Deposition Process in 5-Axis Configuration
,”
Eighth International Conference on Photonic Technologies
, Fürth, Germany, Sept. 8–11, pp.
239
249
.
72.
Montes
,
C. A.
,
Wong
,
C.
,
Ziegert
,
J. C.
, and
Mears
,
L.
,
2015
, “
Vision-Based Tracking of a Dynamic Target With Application to Multi-Axis Position Control
,”
J. Real-Time Image Process.
,
10
(
1
), pp.
119
134
.
73.
Ding
,
S.
,
Huang
,
X.
,
Yu
,
C.
, and
Wang
,
W.
,
2016
, “
Actual Inverse Kinematics for Position-Independent and Position-Dependent Geometric Error Compensation of Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
111
, pp.
55
62
.
74.
Shin
,
S.
,
Woo
,
J.
,
Kim
,
D. B.
,
Kumaraguru
,
S.
, and
Rachuri
,
S.
,
2016
, “
Developing a Virtual Machining Model to Generate MTConnect Machine-Monitoring Data From STEP-NC
,”
Int. J. Prod. Res.
,
54
(
15
), pp.
1
19
.
75.
Altintas
,
Y.
, and
Khoshdarregi
,
M.
,
2012
, “
Contour Error Control of CNC Machine Tools With Vibration Avoidance
,”
CIRP Ann.-Manuf. Technol.
,
61
(
1
), pp.
335
338
.
76.
Khoshdarregi
,
M. R.
,
Tappe
,
S.
, and
Altintas
,
Y.
,
2014
, “
Integrated Five-Axis Trajectory Shaping and Contour Error Compensation for High-Speed CNC Machine Tools
,”
IEEE/ASME Trans. Mechatronics
,
19
(
6
), pp.
1859
1871
.
77.
Kaymakci
,
M.
,
Kilic
,
Z.
, and
Altintas
,
Y.
,
2012
, “
Unified Cutting Force Model for Turning, Boring, Drilling and Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
54–55
, pp.
34
45
.
78.
Wang
,
J.
,
Gao
,
R. X.
,
Yuan
,
Z.
,
Fan
,
Z.
, and
Zhang
,
L.
, “
A Joint Particle Filter and Expectation Maximization Approach to Machine Condition Prognosis
,”
J. Intell. Manuf.
, epub.
79.
Zhu
,
R.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2003
, “
A Model-Based Monitoring and Fault Diagnosis Methodology for Free-Form Surface Machining Process
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
397
404
.
80.
Zhang
,
F.
,
Yan
,
Y.
, and
Butt
,
S.
,
2016
, “
Integrated Model Based Thin-Walled Part Machining Precision Control for the Workpiece-Fixture System
,”
Int. J. Adv. Manuf. Technol.
,
85
(
5
), pp.
1745
1758
.
81.
Mousavi
,
S.
,
Gagnol
,
V.
,
Bouzgarrou
,
B.
, and
Ray
,
P.
,
2017
, “
Model-Based Stability Prediction of a Machining Robot
,”
New Advances in Mechanisms, Mechanical Transmissions and Robotics
,
B.
Corves
,
E.-C.
Lovasz
,
M.
Hüsing
,
I.
Maniu
, and
C.
Gruescu
, eds.,
Springer
, London, pp.
379
387
.
82.
Cen
,
L.
,
Melkote
,
S. N.
,
Castle
,
J.
, and
Appelman
,
H.
,
2016
, “
A Wireless Force Sensing and Model Based Approach for Enhancement of Machining Accuracy in Robotic Milling
,”
IEEE/ASME Trans. Mechatronics
,
21
(
5
), pp.
2227
2235
.
83.
Lu
,
Y.
,
Jee
,
C.
, and
Pagilla
,
P. R.
,
2016
, “
Design of a Model-Based Observer for Estimation of Steel Strip Tension in Continuous Galvanizing/Annealing Lines
,” American Control Conference (
ACC
), Boston, MA, July 6–8, pp.
3249
3254
.
84.
Itoh
,
M.
,
2009
, “
Vibration Suppression Control for a Dies-Driving Spindle of a Form Rolling Machine: Effects of a Model-Based Control With a Rotational Speed Sensor II
,” International Conference on Mechatronics and Automation (
ICMA
), Changchun, China, Aug. 9–12, pp.
3827
3832
.
85.
Rabani
,
A.
,
Madariaga
,
J.
,
Bouvier
,
C.
, and
Axinte
,
D.
,
2016
, “
An Approach for Using Iterative Learning for Controlling the Jet Penetration Depth in Abrasive Waterjet Milling
,”
J. Manuf. Processes
,
22
, pp.
99
107
.
86.
Mohamad
,
A.
,
Zain
,
A. M.
,
Bazin
,
N. E. N.
, and
Udin
,
A.
,
2015
, “
A Process Prediction Model Based on Cuckoo Algorithm for Abrasive Waterjet Machining
,”
J. Intell. Manuf.
,
26
(
6
), pp.
1247
1252
.
87.
Davis
,
T. A.
,
Shin
,
Y. C.
, and
Yao
,
B.
,
2010
, “
Observer-Based Adaptive Robust Control of Friction Stir Welding Axial Force
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
), Montreal, QC, Canada, July 6–9, pp.
1162
1167
.
88.
Huang
,
N.
,
Liu
,
Y.
,
Chen
,
S.
, and
Zhang
,
Y.
,
2016
, “
Interval Model Control of Human Welder’s Movement in Machine-Assisted Manual GTAW Torch Operation
,”
Int. J. Adv. Manuf. Technol.
,
85
(
1
), pp.
397
405
.
89.
Suzuki
,
N.
,
Ikeda
,
R.
, and
Shamoto
,
E.
,
2016
, “Primitive Study on Model-Based Process Identification by Utilizing Force Estimation Techniques,”
ASME
Paper No. MSEC2016-8872.
90.
Karpat
,
Y.
,
Zeren
,
E.
, and
Özel
,
T.
,
2005
, “
Workpiece Material Model Based Predictions for Machining Processes
,”
Trans. NAMRI
,
33
(1), pp.
413
420
.
91.
Zhu
,
K.
,
San Wong
,
Y.
, and
Hong
,
G. S.
,
2009
, “
Wavelet Analysis of Sensor Signals for Tool Condition Monitoring: A Review and Some New Results
,”
Int. J. Mach. Tools Manuf.
,
49
(
7
), pp.
537
553
.
92.
Siddhpura
,
A.
, and
Paurobally
,
R.
,
2013
, “
A Review of Flank Wear Prediction Methods for Tool Condition Monitoring in a Turning Process
,”
Int. J. Adv. Manuf. Technol.
,
65
(
1–4
), pp.
371
393
.
93.
Dutta
,
S.
,
Pal
,
S.
,
Mukhopadhyay
,
S.
, and
Sen
,
R.
,
2013
, “
Application of Digital Image Processing in Tool Condition Monitoring: A Review
,”
CIRP J. Manuf. Sci. Technol.
,
6
(
3
), pp.
212
232
.
94.
Rao
,
K. V.
,
Murthy
,
B.
, and
Rao
,
N. M.
,
2014
, “
Prediction of Cutting Tool Wear, Surface Roughness and Vibration of Work Piece in Boring of AISI 316 Steel With Artificial Neural Network
,”
Measurement
,
51
, pp.
63
70
.
95.
da Silva
,
R.
,
da Silva
,
M.
, and
Hassui
,
A.
,
2016
, “
A Probabilistic Neural Network Applied in Monitoring Tool Wear in the End Milling Operation Via Acoustic Emission and Cutting Power Signals
,”
Mach. Sci. Technol.
,
20
(
3
), pp.
386
406
.
96.
Wang
,
G.
, and
Cui
,
Y.
,
2013
, “
On Line Tool Wear Monitoring Based on Auto Associative Neural Network
,”
J. Intell. Manuf.
,
24
(
6
), pp.
1085
1094
.
97.
Akhavan Niaki
,
F.
,
Feng
,
L.
,
Ulutan
,
D.
, and
Mears
,
L.
,
2016
, “
A Wavelet-Based Data-Driven Modelling for Tool Wear Assessment of Difficult to Machine Materials
,”
Int. J. Mechatronics Manuf. Syst.
,
9
(
2
), pp.
97
121
.
98.
Corne
,
R.
,
Nath
,
C.
,
Mansori
,
M. E.
, and
Kurfess
,
T.
,
2016
, “
Enhancing Spindle Power Data Application With Neural Network for Real-Time Tool Wear/Breakage Prediction During Inconel Drilling
,”
Procedia Manuf.
,
5
, pp.
1
14
.
99.
Hu
,
S.
,
Liu
,
F.
,
He
,
Y.
, and
Hu
,
T.
,
2012
, “
An On-Line Approach for Energy Efficiency Monitoring of Machine Tools
,”
J. Cleaner Prod.
,
27
, pp.
133
140
.
100.
Atluru
,
S.
,
Huang
,
S. H.
, and
Snyder
,
J. P.
,
2012
, “
A Smart Machine Supervisory System Framework
,”
Int. J. Adv. Manuf. Technol.
,
58
(
5–8
), pp.
563
572
.
101.
Brezak
,
D.
,
Majetic
,
D.
,
Udiljak
,
T.
, and
Kasac
,
J.
,
2012
, “
Tool Wear Estimation Using an Analytic Fuzzy Classifier and Support Vector Machines
,”
J. Intell. Manuf.
,
23
(
3
), pp.
797
809
.
102.
García-Nieto
,
P. J.
,
García-Gonzalo
,
E.
,
Vilán
,
J. V.
, and
Robleda
,
A. S.
,
2016
, “
A New Predictive Model Based on the PSO-Optimized Support Vector Machine Approach for Predicting the Milling Tool Wear From Milling Runs Experimental Data
,”
Int. J. Adv. Manuf. Technol.
,
86
(
1–4
), pp.
1
12
.
103.
Wang
,
G.
,
Yang
,
Y.
,
Zhang
,
Y.
, and
Xie
,
Q.
,
2014
, “
Vibration Sensor Based Tool Condition Monitoring Using ν Support Vector Machine and Locality Preserving Projection
,”
Sens. Actuators A: Phys.
,
209
, pp.
24
32
.
104.
Mosallam
,
A.
,
Medjaher
,
K.
, and
Zerhouni
,
N.
,
2014
, “
Data-Driven Prognostic Method Based on Bayesian Approaches for Direct Remaining Useful Life Prediction
,”
J. Intell. Manuf.
,
27
(
5
), pp.
1
12
.
105.
Kannatey-Asibu
,
E.
,
Yum
,
J.
, and
Kim
,
T.
,
2017
, “
Monitoring Tool Wear Using Classifier Fusion
,”
Mech. Syst. Signal Process.
,
85
, pp.
651
661
.
106.
Yin
,
F.
,
Mao
,
H.
,
Hua
,
L.
,
Guo
,
W.
, and
Shu
,
M.
,
2011
, “
Back Propagation Neural Network Modeling for Warpage Prediction and Optimization of Plastic Products During Injection Molding
,”
Mater. Des.
,
32
(
4
), pp.
1844
1850
.
107.
Altan
,
M.
,
2010
, “
Reducing Shrinkage in Injection Moldings Via the Taguchi, ANOVA and Neural Network Methods
,”
Mater. Des.
,
31
(
1
), pp.
599
604
.
108.
Che
,
Z.
,
2010
, “
PSO-Based Back-Propagation Artificial Neural Network for Product and Mold Cost Estimation of Plastic Injection Molding
,”
Comput. Ind. Eng.
,
58
(
4
), pp.
625
637
.
109.
Wang
,
H.
,
Wang
,
Y.
, and
Wang
,
Y.
,
2013
, “
Cost Estimation of Plastic Injection Molding Parts Through Integration of PSO and BP Neural Network
,”
Expert Syst. Appl.
,
40
(
2
), pp.
418
428
.
110.
Tsai
,
C.
,
Chang
,
Y.
, and
Tung
,
S.
,
2014
, “
Two DOF Temperature Control Using RBFNN for Stretch PET Blow Molding Machines
,” IEEE International Conference on Systems, Man and Cybernetics (
SMC
), San Diego, CA, Oct. 5–8, pp.
1759
1764
.
111.
Gu
,
L.
, and
Zheng
,
T.
,
2016
, “
Study on the Generalized Holo-Factors Mathematical Model of Dimension-Error and Shape-Error for Sheet Metal in Stamping Based on the Back Propagation (BP) Neural Network
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
064502
.
112.
Chokshi
,
P.
,
Dashwood
,
R.
, and
Hughes
,
D. J.
,
2017
, “
Artificial Neural Network (ANN) Based Microstructural Prediction Model for 22MnB5 Boron Steel During Tailored Hot Stamping
,”
Comput. Struct.
,
190
, pp.
162
172
.
113.
Hartmann
,
C.
,
Opritescu
,
D.
, and
Volk
,
W.
,
2016
, “
An Artificial Neural Network Approach for Tool Path Generation in Incremental Sheet Metal Free-Forming
,”
J. Intell. Manuf.
, epub.
114.
Li
,
Y.
,
Xu
,
M.
,
Wei
,
Y.
, and
Huang
,
W.
,
2016
, “
A New Rolling Bearing Fault Diagnosis Method Based on Multiscale Permutation Entropy and Improved Support Vector Machine Based Binary Tree
,”
Measurements
,
77
, pp.
80
94
.
115.
Li
,
X.
,
Zheng
,
A.
,
Li
,
C.
, and
Zhang
,
L.
,
2013
, “
Rolling Element Bearing Fault Detection Using Support Vector Machine With Improved Ant Colony Optimization
,”
Measurements
,
46
(
8
), pp.
2726
2734
.
116.
Bhat
,
N. N.
,
Kumari
,
K.
,
Dutta
,
S.
,
Pal
,
S. K.
, and
Pal
,
S.
,
2015
, “
Friction Stir Weld Classification by Applying Wavelet Analysis and Support Vector Machine on Weld Surface Images
,”
J. Manuf. Processes
,
20
(
Part 1
), pp.
274
281
.
117.
Das
,
B.
,
Pal
,
S.
, and
Bag
,
S.
,
2017
, “
Torque Based Defect Detection and Weld Quality Modelling in Friction Stir Welding Process
,”
J. Manuf. Processes
,
27
, pp.
8
17
.
118.
Das
,
B.
,
Pal
,
S.
, and
Bag
,
S.
,
2017
, “
Design and Development of Force and Torque Measurement Setup for Real Time Monitoring of Friction Stir Welding Process
,”
Measurements
,
103
, pp.
186
198
.
119.
Pani
,
A. K.
, and
Mohanta
,
H. K.
,
2014
, “
Soft Sensing of Particle Size in a Grinding Process: Application of Support Vector Regression, Fuzzy Inference and Adaptive Neuro Fuzzy Inference Techniques for Online Monitoring of Cement Fineness
,”
Powder Technol.
,
264
, pp.
484
497
.
120.
Zhang
,
Y.
, and
Liang
,
Y.
,
2016
, “
Research on Soft-Sensor Based on Support Vector Regression for Particle Size of Grinding and Classification Process
,” Chinese IEEE Control and Decision Conference (
CCDC
), Yinchuan, China, May 28–30, pp.
6708
6713
.
121.
Xiong
,
J.
,
Zhang
,
G.
,
Qiu
,
Z.
, and
Li
,
Y.
,
2013
, “
Vision-Sensing and Bead Width Control of a Single-Bead Multi-Layer Part: Material and Energy Savings in GMAW-Based Rapid Manufacturing
,”
J. Cleaner Prod.
,
41
, pp.
82
88
.
122.
Xiong
,
J.
,
Zhang
,
G.
,
Hu
,
J.
, and
Wu
,
L.
,
2014
, “
Bead Geometry Prediction for Robotic GMAW-Based Rapid Manufacturing Through a Neural Network and a Second-Order Regression Analysis
,”
J. Intell. Manuf.
,
25
(
1
), pp.
157
163
.
123.
Xiong
,
J.
,
Zhang
,
G.
,
Hu
,
J.
, and
Li
,
Y.
,
2013
, “
Forecasting Process Parameters for GMAW-Based Rapid Manufacturing Using Closed-Loop Iteration Based on Neural Network
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
743
751
.
124.
Saqib
,
S.
,
Urbanic
,
R. J.
, and
Aggarwal
,
K.
,
2014
, “
Analysis of Laser Cladding Bead Morphology for Developing Additive Manufacturing Travel Paths Design of Experiments
,”
47th CIRP Conference on Manufacturing Systems
, Windsor, ON, Canada, Apr. 28–30, pp.
824
829
.
125.
Sarlo
,
R.
, and
Tarazaga
,
P. A.
,
2016
, “
A Neural Network Approach to 3D Printed Surrogate Systems
,”
Nonlinear Dynamics
(Proceedings of the 34th IMAC, A Conference and Exposition on Structural Dynamics), Vol. 1, Springer, Cham, Switzerland, pp.
215
222
.
126.
Chowdhury
,
S.
, and
Anand
,
S.
,
2016
, “Artificial Neural Network Based Geometric Compensation for Thermal Deformation in Additive Manufacturing Processes,”
ASME
Paper No. MSEC2016-8784.
127.
Jayadeva
,
R.
,
Khemchandani
,
S.
, and
Chandra
,
2005
, “
Fuzzy Linear Proximal Support Vector Machines for Multi-Category Data Classification
,”
Neurocomputing
,
67
, pp.
426
435
.
128.
Tseng
,
T. L.
,
Ho
,
J. C.
,
Gandara
,
P.
,
Huang
,
C. C.
,
Chiou
,
R.
,
Zheng
,
J.
, and
Gonzalez
,
M.
,
2011
, “
E-Quality Control in Additive Manufacturing Using Support Vector Machines and Dimensional Index
,”
61st Annual IIE Conference and Expo
, Reno, NV, May 21–25, pp. 2312–2319.
129.
Erdim
,
H.
,
Lazoglu
,
I.
, and
Ozturk
,
B.
,
2006
, “
Feedrate Scheduling Strategies for Free-Form Surfaces
,”
Int. J. Mach. Tools Manuf.
,
46
(
7
), pp.
747
757
.
130.
Erdim
,
H.
, and
Lazoglu
,
I.
,
2012
, “
Offline Force Control and Feedrate Scheduling for Complex Free Form Surfaces in 5-Axis Milling
,”
Procedia CIRP
,
1
, pp.
96
101
.
131.
Han
,
Z.
,
Jin
,
H.
,
Fu
,
Y.
, and
Fu
,
H.
,
2017
, “
Cutting Deflection Control of the Blade Based on Real-Time Feedrate Scheduling in Open Modular Architecture CNC System
,”
Int. J. Adv. Manuf. Technol.
,
90
(
9–12
), pp.
2567
2579
.
132.
Liang
,
Y.
,
Ren
,
J.
,
Zhang
,
D.
,
Li
,
X.
, and
Zhou
,
J.
,
2015
, “
Mechanics-Based Feedrate Scheduling for Multi-Axis Plunge Milling
,”
Int. J. Adv. Manuf. Technol.
,
79
(
1–4
), pp.
123
133
.
133.
Lee
,
A.
,
Lin
,
M.
,
Pan
,
Y.
, and
Lin
,
W.
,
2011
, “
The Feedrate Scheduling of NURBS Interpolator for CNC Machine Tools
,”
Comput. Aided Des.
,
43
(
6
), pp.
612
628
.
134.
Sun
,
Y.
,
Zhao
,
Y.
,
Bao
,
Y.
, and
Guo
,
D.
,
2014
, “
A Novel Adaptive-Feedrate Interpolation Method for NURBS Tool Path With Drive Constraints
,”
Int. J. Mach. Tools Manuf.
,
77
, pp.
74
81
.
135.
Beudaert
,
X.
,
Lavernhe
,
S.
, and
Tournier
,
C.
,
2012
, “
Feedrate Interpolation With Axis Jerk Constraints on 5-Axis NURBS and G1 Tool Path
,”
Int. J. Mach. Tools Manuf.
,
57
, pp.
73
82
.
136.
Ridwan
,
F.
, and
Xu
,
X.
,
2013
, “
Advanced CNC System With In-Process Feed-Rate Optimization
,”
Rob. Comput. Integr. Manuf.
,
29
(
3
), pp.
12
20
.
137.
Deng
,
C.
,
Xiong
,
Y.
,
Wang
,
Y.
, and
Wu
,
J.
,
2012
, “
Machining Process Parameters Optimization Based on Grid Optimization Algorithm
,”
Adv. Mater. Res.
,
562–564
, pp.
2021
2025
.
138.
Bosetti
,
P.
,
Leonesio
,
M.
, and
Parenti
,
P.
,
2013
, “
On Development of an Optimal Control System for Real-Time Process Optimization on Milling Machine Tools
,”
Procedia CIRP
,
12
, pp.
31
36
.
139.
Yao
,
Z.
, and
Zhou
,
M.
,
2015
, “
Applying Multi-Objective Particle Swarm Optimization to Maintenance Scheduling for CNC Machine Tools
,”
Appl. Mech. Mater.
,
721
, pp.
144
148
.
140.
Gao
,
Z.
, and
Zhang
,
D.
,
2015
, “
Performance Analysis, Mapping, and Multiobjective Optimization of a Hybrid Robotic Machine Tool
,”
IEEE Trans. Ind. Electron.
,
62
(
1
), pp.
423
433
.
141.
Chen
,
W.
,
Nguyen
,
M.
,
Chiu
,
W.
,
Chen
,
T.
, and
Tai
,
P.
,
2016
, “
Optimization of the Plastic Injection Molding Process Using the Taguchi Method, RSM, and Hybrid GA-PSO
,”
Int. J. Adv. Manuf. Technol.
,
83
(
9–12
), pp.
1873
1886
.
142.
Dang
,
X.
,
2014
, “
Simulation Modelling Practice and Theory General Frameworks for Optimization of Plastic Injection Molding Process Parameters
,”
Simul. Model. Practice Theory
,
41
, pp.
15
27
.
143.
Ohara
,
K.
,
Tsugeno
,
M.
,
Imanari
,
H.
,
Sakiyama
,
Y.
,
Kitagoh
,
K.
, and
Yanagimoto
,
J.
,
2014
, “
Process Optimization for the Manufacturing of Sheets With Estimated Balance Between Product Quality and Energy Consumption
,”
CIRP Ann. Manuf. Technol.
,
63
(1), pp.
257
260
.
144.
Karen
,
I.
,
Kaya
,
N.
, and
Öztürk
,
F.
,
2015
, “
Intelligent Die Design Optimization Using Enhanced Differential Evolution and Response Surface Methodology
,”
J. Intell. Manuf.
,
26
(
5
), pp.
1027
1038
.
145.
Wang
,
H.
,
Chen
,
L.
, and
Li
,
E.
,
2017
, “
Time Dependent Sheet Metal Forming Optimization by Using Gaussian Process Assisted Firefly Algorithm
,”
Int. J. Mater. Forming
, epub.
146.
Kurra
,
S.
,
Regalla
,
S.
, and
Gupta
,
A. K.
,
2016
, “
Parametric Study and Multi-Objective Optimization in Single-Point Incremental Forming of Extra Deep Drawing Steel Sheets
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
230
(
5
), pp.
825
837
.
147.
Garg
,
A.
,
Siu
,
J. S. L.
, and
Savalani
,
M. M.
,
2015
, “
A New Computational Intelligence Approach in Formulation of Functional Relationship of Open Porosity of the Additive Manufacturing Process
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1–4
), pp.
555
565
.
148.
Canellidis
,
V.
,
Giannatsis
,
J.
, and
Dedoussis
,
V.
,
2016
, “
Evolutionary Computing and Genetic Algorithms: Paradigm Applications in 3D Printing Process Optimization
,”
Intelligent Computing Systems
,
G. A.
Tsihrintzis
,
M.
Virvou
, and
L. C.
Jain
,
e
ds., Springer, Berlin, pp.
271
298.
149.
Moller
,
M.
,
Baramsky
,
N.
,
Ewald
,
A.
,
Emmelmann
,
C.
, and
Schlattmann
,
J.
,
2016
, “
Evolutionary-Based Design and Control of Geometry Aims for AMD-Manufcturing of Ti–6Al–4V Parts
,”
Nineth International Conference on Photonic Technologies
(
LANE
), Fürth, Germany, Sept. 19–22, pp.
733
742
.
150.
Villalpando
,
L.
,
Eiliat
,
H.
, and
Urbanic
,
R. J.
,
2014
, “
An Optimization Approach for Components Built by Fused Deposition Modeling With Parametric Internal Structures
,” Sixth CIRP Conference on Industrial Product-Service System (
ISP2
), Windsor, ON, Canada, May 1–2, pp.
800
805
.
151.
Pathak
,
V. K.
, and
Singh
,
A. K.
,
2017
, “
A Particle Swarm Optimization Approach for Minimizing GD&T Error in Additive Manufactured Parts: PSO Based GD&T Minimization
,”
Int. J. Manuf., Mater., Mech. Eng.
,
7
(
3
), pp.
67
72
.
152.
Karandikar
,
J.
,
McLeay
,
T.
,
Turner
,
S.
, and
Schmitz
,
T.
,
2015
, “
Tool Wear Monitoring Using Naïve Bayes Classifiers
,”
Int. J. Adv. Manuf. Technol.
,
77
(
9–12
), pp.
1613
1626
.
153.
Mandal
,
S.
,
Sharma
,
V. K.
, and
Pal
,
A.
,
2016
, “
Tool Strain–Based Wear Estimation in Micro Turning Using Bayesian Networks
,”
Proc. Inst. Mech. Eng., Part B
,
230
(
10
), pp.
1952
1960
.
154.
Kong, D.
,
Chen, Y.
, and
Li, N.
, 2017, “
Hidden Semi-Markov Model-Based Method for Tool Wear Estimation in Milling Process
,”
J. Adv. Manuf. Technol.
,
92
(9–12), pp. 3647–3657.
155.
Yu
,
J.
,
Liang
,
S.
,
Tang
,
D.
, and
Liu
,
H.
,
2016
, “
A Weighted Hidden Markov Model Approach for Continuous-State Tool Wear Monitoring and Tool Life Prediction
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
201
211
.
156.
Zhu
,
K.
,
Wong
,
Y. S.
, and
Hong
,
G. S.
,
2009
, “
Multi-Category Micro-Milling Tool Wear Monitoring With Continuous Hidden Markov Models
,”
Mech. Syst. Signal Process.
,
23
(
2
), pp.
547
560
.
157.
Wang
,
G.
, and
Feng
,
X.
,
2013
, “
Tool Wear State Recognition Based on Linear Chain Conditional Random Field Model
,”
Eng. Appl. Artif. Intell.
,
26
(
4
), pp.
1421
1427
.
158.
Li
,
L.
, and
An
,
Q.
,
2016
, “
An In-Depth Study of Tool Wear Monitoring Technique Based on Image Segmentation and Texture Analysis
,”
Measurement
,
79
, pp.
44
52
.
159.
Akhavan Niaki
,
F.
,
Michel
,
M.
, and
Mears
,
L.
,
2016
, “
State of Health Monitoring in Machining: Extended Kalman Filter for Tool Wear Assessment in Turning of IN718 Hard-to-Machine Alloy
,”
J. Manuf. Processes
,
24
(
Part 2
), pp.
361
369
.
160.
Akhavan Niaki
,
F.
,
Ulutan
,
D.
, and
Mears
,
L.
,
2015
, “
Stochastic Tool Wear Assessment in Milling Difficult to Machine Alloys
,”
Int. J. Mechatronics Manuf. Syst.
,
8
(
3–4
), pp.
134
159
.
161.
Wang
,
P.
, and
Gao
,
R. X.
,
2016
, “
Stochastic Tool Wear Prediction for Sustainable Manufacturing
,”
Procedia CIRP
,
48
, pp.
236
241
.
162.
Dey
,
S.
, and
Stori
,
J.
,
2005
, “
A Bayesian Network Approach to Root Cause Diagnosis of Process Variations
,”
Int. J. Mach. Tools Manuf.
,
45
(
1
), pp.
75
91
.
163.
Correa
,
M.
,
Bielza
,
C.
,
Ramirez
,
M. D. J.
, and
Alique
,
J.
,
2008
, “
A Bayesian Network Model for Surface Roughness Prediction in the Machining Process
,”
Int. J. Syst. Sci.
,
39
(
12
), pp.
1181
1192
.
164.
Mehta
,
P.
,
Werner
,
A.
, and
Mears
,
L.
,
2015
, “
Condition Based Maintenance-Systems Integration and Intelligence Using Bayesian Classification and Sensor Fusion
,”
J. Intell. Manuf.
,
26
(
2
), pp.
331
346
.
165.
Nannapaneni
,
S.
,
Mahadevan
,
S.
, and
Rachuri
,
S.
,
2016
, “
Performance Evaluation of a Manufacturing Process Under Uncertainty Using Bayesian Networks
,”
J. Cleaner Prod.
,
113
, pp.
947
959
.
166.
Jin
,
S.
,
Liu
,
C.
,
Lai
,
X.
,
Li
,
F.
, and
He
,
B.
,
2017
, “
Bayesian Network Approach for Ceramic Shell Deformation Fault Diagnosis in the Investment Casting Process
,”
Int. J. Adv. Manuf. Technol.
,
88
(
1–4
), pp.
663
674
.
167.
Verma
,
V. I.
,
Magikar
,
A.
, and
Patil
,
M.
,
2017
, “
Simulation Based Fault Detection and Diagnosis for Additive Manufacturing
,”
Indian J. Sci. Technol.
,
10
(
16
), pp. 1–8.
168.
Rao
,
P. K.
,
Liu
,
J.
,
Roberson
,
D.
,
Kong
,
Z.
, and
Williams
,
C.
,
2015
, “
Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061007
.
169.
Uhlmann
,
E.
,
Pastl
,
R.
,
Laghmouchi
,
A.
, and
Bergmann
,
A.
,
2017
, “
Intelligent Pattern Recognition of a SLM Machine Process and Sensor Data
,” Tenth CIRP Conference on Intelligent Computation in Manufacturing Engineering (
ICME
), Napoli, Italy, July 20–22, pp.
464
469
.
170.
Rabiner
,
L.
,
1989
, “
A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition
,”
Proc. IEEE
,
77
(
2
), pp.
257
286
.
171.
Geramifard
,
O.
,
Xu
,
J.
,
Zhou
,
J.
, and
Li
,
X.
,
2012
, “
A Physically Segmented Hidden Markov Model Approach for Continuous Tool Condition Monitoring: Diagnostics and Prognostics
,”
IEEE Trans. Ind. Inf.
,
8
(
4
), pp.
964
973
.
172.
Geramifard
,
O.
,
Xu
,
J.
,
Zhou
,
J.
, and
Li
,
X.
,
2014
, “
Multimodal Hidden Markov Model-Based Approach for Tool Wear Monitoring
,”
IEEE Trans. Ind. Electron.
,
61
(
6
), pp.
2900
2911
.
173.
Bhat
,
N. N.
,
Dutta
,
S.
,
Pal
,
S. K.
, and
Pal
,
S.
,
2016
, “
Tool Condition Classification in Turning Process Using Hidden Markov Model Based on Texture Analysis of Machined Surface Images
,”
Measurements
,
90
, pp.
500
509
.
174.
Ge
,
M.
,
Du
,
R.
, and
Xu
,
Y.
,
2004
, “
Hidden Markov Model Based Fault Diagnosis for Stamping Processes
,”
Mech. Syst. Signal Process.
,
18
(
2
), pp.
391
408
.
175.
Wu
,
H.
,
Yu
,
Z.
, and
Wang
,
Y.
,
2017
, “
Real-Time FDM Machine Condition Monitoring and Diagnosis Based on Acoustic Emission and Hidden Semi-Markov Model
,”
Int. J. Adv. Manuf. Technol.
,
90
(
5–8
), pp.
2027
2036
.
176.
Mahfouz
,
S.
,
Mourad-Chehade
,
F.
,
Honeine
,
P.
,
Farah
,
J.
, and
Snoussi
,
H.
,
2014
, “
Target Tracking Using Machine Learning and Kalman Filter in Wireless Sensor Networks
,”
IEEE Sens. J.
,
14
(
10
), pp.
3715
3725
.
177.
Enkhtur
,
M.
,
Cho
,
S. Y.
, and
Kim
,
K.
,
2013
, “
Modified Unscented Kalman Filter for a Multirate INS/GPS Integrated Navigation System
,”
ETRI J.
,
35
(
5
), pp.
943
946
.
178.
Wang
,
P.
, and
Gao
,
R. X.
,
2016
, “
Markov Nonlinear System Estimation for Engine Performance Tracking
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
091201
179.
Zhang
,
H.
,
Zhang
,
C.
,
Zhang
,
J.
, and
Zhou
,
L.
,
2014
, “
Tool Wear Model Based on Least Squares Support Vector Machines and Kalman Filter
,”
Prod. Eng.
,
8
(
1–2
), pp.
101
109
.
180.
Ahn
,
S.
,
Beaman
,
J. J.
,
Williamson
,
R. L.
, and
Melgaard
,
D. K.
,
2010
, “
Model-Based Control of Electroslag Remelting Process Using Unscented Kalman Filter
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
1
), p.
011011
.
181.
Beaman
,
J. J.
,
Lopez
,
L. F.
, and
Williamson
,
R. L.
,
2014
, “
Modeling of the Vacuum Arc Remelting Process for Estimation and Control of the Liquid pool Profile
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
3
), p.
031007
.
182.
Izquierdo
,
L. E.
,
Shi
,
J.
,
Hu
,
S. J.
, and
Wampler
,
C. W.
,
2007
, “
Feedforward Control of Multistage Assembly Processes Using Programmable Tooling
,”
Trans. NAMRI/SME
,
35
, pp.
295
302
.
183.
Campbell
,
W. J.
,
Firth
,
S. K.
,
Toprac
,
A. J.
, and
Edgar
,
T. F.
,
2002
, “
A Comparison of Run-to-Run Control Algorithms
,” American Control Conference (
ACC
), Anchorage, AK, May 8–10, pp.
2150
2155
.
184.
Harirchi, F.
,
Vincent, T.
,
Subramanian, A.
,
Poolla, K.
, and
Stirton, B.
, 2013, “
Characterizing and Resolving Unobservability in Run-to-Run Control of High Mix Semiconductor Manufacturing
,” IEEE Annual Conference on Decision and Control (
CDC
), Florence, Italy, Dec. 10–13, pp. 7022–7027.
185.
Wang
,
Y.
,
Gao
,
F.
, and
Doyle
,
F. J.
, III
,
2009
, “
Survey on Iterative Learning Control, Repetitive Control, and Run-to-Run Control
,”
J. Process Control
,
19
(
10
), pp.
1589
1600
.
186.
Miller
,
M. L.
,
1997
, “
Impact of Multi-Product and -Process Manufacturing on Run-to-Run Control
,”
Proc. SPIE
,
3213
, pp.
138
146
.
187.
Jin
,
J.
, and
Shi
,
J.
,
1999
, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
756
762
.
188.
Kwon
,
J. S.
,
Nayhouse
,
M.
,
Orkoulas
,
G.
,
Ni
,
D.
, and
Christofides
,
P. D.
,
2015
, “
A Method for Handling Batch-to-Batch Parametric Drift Using Moving Horizon Estimation: Application to Run-to-Run MPC of Batch Crystallization
,”
Chem. Eng. Sci.
,
127
(
1
), pp.
210
219
.
189.
Kwon
,
J. S.
,
Nayhouse
,
M.
,
Orkoulas
,
G.
,
Ni
,
D.
, and
Christoffides
,
P. D.
,
2015
, “
Run-to-Run-Based Model Predictive Control of Protein Crystal Shape in Batch Crystallization
,”
Ind. Eng. Chem. Res.
,
54
(
16
), pp.
4293
4302
.
190.
Wang
,
X.
,
Wu
,
S.
, and
Wang
,
K.
,
2015
, “
A Run-to-Run Profile Control Algorithm for Improving the Flatness of Nano-Scale Products
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
1
), pp.
192
203
.
191.
De Liao
,
L.
,
Chao
,
P. C. P.
,
Lin
,
Y. J.
,
Chiu
,
C. W.
,
Miaou
,
S. G.
,
Chang
,
M.
, and
Huang
,
J. S.
,
2009
, “
Precision Micro-/Nano-Machining in a Scanning Electron Microscope by Run-to-Run Control Based on Image Feedbacks
,”
Microelectron. Eng.
,
86
(
4–6
), pp.
1162
1168
.
192.
Mehta
,
P.
, and
Mears
,
L.
,
2015
, “
Adaptive Control for Multistage Machining Process Scenario—Bar Turning With Varying Material Properties
,”
Int. J. Adv. Manuf. Technol.
,
78
(
5–8
), pp.
1265
1273
.
193.
Tan
,
F.
,
Pan
,
T.
,
Li
,
Z.
, and
Chen
,
S.
,
2015
, “
Survey on Run-to-Run Control Algorithms in High-Mix Semiconductor Manufacturing Processes
,”
IEEE Trans. Ind. Inf.
,
11
(
6
), pp.
1435
1444
.
194.
Fan
,
S.-K. S.
, and
Chang
,
Y.-J.
,
2013
, “
An Integrated Advanced Process Control Framework Using Run-to-Run Control, Virtual Metrology and Fault Detection
,”
J. Process Control
,
23
(
7
), pp.
933
942
.
195.
Ning
,
Z.
,
Moyne
,
J. R.
,
Smith
,
T.
,
Boning
,
D.
,
Del Castillo
,
E.
,
Yeh
,
J.-Y.
, and
Hurwitz
,
A.
,
1996
, “
A Comparative Analysis of Run-to-Run Control Algorithms in the Semiconductor Manufacturing Industry
,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (
ASMC
), Cambridge, MA, Nov. 12–14, pp.
375
381
.
196.
Box
,
G. E. P.
, and
Jenkins
,
G. M.
,
1963
, “
Further Contributions to Adaptive Quality Control: Simultaneous Estimation of Dynamics: Non-Zero Costs
,” International Statistical Institute, Hague, The Netherlands, Technical Report No.
19
.
197.
Sachs
,
E.
,
Hu
,
A.
, and
Ingolfsson
,
A.
,
1995
, “
Run by Run Process Control: Combining SPC and Feedback Control
,”
IEEE Trans. Semicond. Manuf.
,
8
(
1
), pp.
26
43
.
198.
Patel
,
N. S.
, and
Jenkins
,
S. T.
,
2000
, “
Adaptive Optimization of Run-to-Run Controllers: The EWMA Example
,”
IEEE Trans. Semicond. Manuf.
,
13
(
1
), pp.
97
107
.
199.
Wang
,
J.
, and
He
,
Q. P.
,
2007
, “
A Bayesian Approach for Disturbance Detection and Classification and Its Application to State Estimation in Run-to-Run Control
,”
IEEE Trans. Semicond. Manuf.
,
20
(
2
), pp.
126
136
.
200.
Good
,
R. P.
, and
Qin
,
S. J.
,
2006
, “
On the Stability of MIMO EWMA Run-to-Run Controllers With Metrology Delay
,”
IEEE Trans. Semicond. Manuf.
,
19
(
1
), pp.
78
86
.
201.
Good
,
R.
, and
Qin
,
S. J.
,
2002
, “
Stability Analysis of Double EWMA Run-to-Run Control With Metrology Delay
,” American Control Conference (
ACC
), Anchorage, AK, May 8–10, pp.
2156
2161
.
202.
Mullins
,
J. A.
,
Campbell
,
W. J.
, and
Stock
,
A. D.
,
1997
, “
Evaluation of Model Predictive Control in Run-to-Run Processing in Semiconductor Manufacturing
,”
Proc. SPIE
,
3213
, pp.
182
189
.
203.
Bode
,
C. A.
,
Ko
,
B. S.
, and
Edgar
,
T. F.
,
2004
, “
Run-to-Run Control and Performance Monitoring of Overlay in Semiconductor Manufacturing
,”
Control Eng. Practice
,
12
(
7
), pp.
893
900
.
204.
Qin
,
S. J.
, and
Badgwell
,
T. A.
,
2003
, “
A Survey of Industrial Model Predictive Control Technology
,”
Control Eng. Practice
,
11
(
7
), pp.
733
764
.
205.
Jiao
,
Y.
, and
Djurdjanovic
,
D.
,
2011
, “
Stochastic Control of Multilayer Overlay in Lithography Processes
,”
IEEE Trans. Semicond. Manuf.
,
24
(
3
), pp.
404
417
.
206.
Lee
,
J. H.
, and
Lee
,
K. S.
,
2007
, “
Iterative Learning Control Applied to Batch Processes: An Overview
,”
Control Eng. Practice
,
15
(
10
), pp.
1306
1318
.
207.
Chi
,
R.
,
Lin
,
N.
,
Zhang
,
R.
,
Huang
,
B.
, and
Feng
,
Y.
,
2016
, “
Stochastic High-Order Internal Model-Based Adaptive TILC With Random Uncertainties in Initial States and Desired Reference Points
,”
Int. J. Adaptive Control Signal Process.
,
31
(
5
), pp.
726
741
.
208.
He
,
F.
,
Wang
,
K.
, and
Jiang
,
W.
,
2009
, “
A General Harmonic Rule Controller for Run-to-Run Process Control
,”
IEEE Trans. Semicond. Manuf.
,
22
(
2
), pp.
232
244
.
209.
Zhang
,
J.
,
Chu
,
C.-C.
,
Munoz
,
J.
, and
Chen
,
J.
,
2009
, “
Minimum Entropy Based Run-to-Run Control for Semiconductor Processes With Uncertain Metrology Delay
,”
J. Process Control
,
19
(
10
), pp.
1688
1697
.
210.
Jin
,
R.
, and
Shi
,
J.
,
2012
, “
Reconfigured Piecewise Linear Regression Tree for Multistage Manufacturing Process Control
,”
IIE Trans.
,
44
(
4
), pp.
249
261
.
211.
Chen
,
J.
,
Munoz
,
J.
, and
Cheng
,
N.
,
2012
, “
Deterministic and Stochastic Model Based Run-to-Run Control for Batch Processes With Measurement Delays of Uncertain Duration
,”
J. Process Control
,
22
(
2
), pp.
508
517
.
212.
Kao
,
C.-A.
,
Cheng
,
F.-T.
,
Wu
,
W.-M.
,
Kong
,
F.-W.
, and
Huang
,
H.-H.
,
2013
, “
Run-to-Run Control Utilizing Virtual Metrology With Reliance Index
,”
IEEE Trans. Semicond. Manuf.
,
26
(
1
), pp.
69
81
.
213.
Cano Marchal
,
P.
,
Gámez García
,
J.
, and
Gómez Ortega
,
J.
,
2015
, “
Decision Support System Based on Fuzzy Cognitive Maps and Run-to-Run Control for Global Set-Point Determination
,” IEEE International Conference on Systems, Man, and Cybernetics (
SMC
), Kowloon, China, Oct. 9–12, pp.
1745
1751
.
214.
Wang
,
G.-J.
, and
Yu
,
C.-H.
,
2006
, “
Developing a Neural Network-Based Run-to-Run Process Controller for Chemical-Mechanical Planarization
,”
Int. J. Adv. Manuf. Technol.
,
28
(
9–10
), pp.
899
908
.
215.
Ma
,
M.-D.
,
Chang
,
C.-C.
,
Jang
,
S.-S.
, and
Wong
,
D. S.-H.
,
2009
, “
Mixed Product Run-to-Run Process Control—An ANOVA Model With ARIMA Disturbance Approach
,”
J. Process Control
,
19
(
4
), pp.
604
614
.
216.
Bode
,
C. A.
,
Wang
,
J.
,
He
,
Q. P.
, and
Edgar
,
T. F.
,
2007
, “
Run-to-Run Control and State Estimation in High-Mix Semiconductor Manufacturing
,”
Annu. Rev. Control
,
31
(
2
), pp.
241
253
.
217.
Zheng
,
Y.
,
Lin
,
Q.-H.
,
Wang
,
D. S.-H.
,
Jang
,
S.-S.
, and
Hui
,
K.
,
2006
, “
Stability and Performance Analysis of Mixed Product Run-to-Run Control
,”
J. Process Control
,
16
(
5
), pp.
431
443
.
218.
Wu
,
M.-F.
,
Lin
,
W.-K.
,
Ho
,
C.-L.
,
Wong
,
D. S.-H.
,
Jang
,
S.-S.
,
Zheng
,
Y.
, and
Jain
,
A.
,
2007
, “A Feed
Forward/Feedback Run-to-Run Control of a Mixed Product Process: Simulation and Experimental Studies
,”
Ind. Eng. Chem. Res.
,
46
(
21
), pp.
6963
6970
.
219.
Ai
,
B.
,
Zheng
,
Y.
,
Jang
,
S.-S.
,
Wang
,
Y.
,
Ye
,
L.
, and
Zhou
,
C.
,
2009
, “
The Optimal Drift-Compensatory and Fault Tolerant Approach for Mixed-Product Run-to-Run Control
,”
J. Process Control
,
19
(
8
), pp.
1401
1412
.
220.
Zheng
,
Y.
,
Ai
,
B.
,
Wong
,
D. S. H.
,
Jang
,
S. S.
,
Wang
,
Y.
, and
Zhang
,
J.
,
2010
, “
An EWMA Algorithm With a Cycled Resetting (CR) Discount Factor for Drift and Fault of High-Mix Run-to-Run Control
,”
IEEE Trans. Ind. Inf.
,
6
(
2
), pp.
229
242
.
221.
Lee
,
A.-C.
,
Horng
,
J.-H.
,
Kuo
,
T.-W.
, and
Chou
,
N.-H.
,
2014
, “
Robustness Analysis of Mixed Product Run-to-Run Control for Semiconductor Process Based on ODOB Control Structure
,”
IEEE Trans. Semicond. Manuf.
,
27
(
2
), pp.
212
222
.
222.
Harirchi
,
F.
,
Vincent
,
T. L.
,
Subramanian
,
A.
,
Poolla
,
K.
, and
Stirton
,
B.
,
2014
, “
On the Initialization of Threaded Run-to-Run Control of Semiconductor Manufacturing
,”
IEEE Trans. Semicond. Manuf.
,
27
(
4
), pp.
515
522
.
223.
Firth
,
S. K.
,
Campbell
,
W. J.
,
Toprac
,
A.
, and
Edgar
,
T. F.
,
2006
, “
Just-in-Time Adaptive Disturbance Estimation for Run-to-Run Control of Semiconductor Processes
,”
IEEE Trans. Semicond. Manuf.
,
19
(
3
), pp.
298
315
.
224.
Ma
,
M.-D.
,
Chang
,
C.-C.
,
Wong
,
D. S.-H.
, and
Jang
,
S.-S.
,
2009
, “
Identification of Tool and Product Effects in a Mixed Product and Parallel Tool Environment
,”
J. Process Control
,
19
(
4
), pp.
591
603
.
225.
Vanli
,
O. A.
,
Patel
,
N. S.
,
Janakiram
,
M.
, and
Del Castillo
,
E.
,
2007
, “
Model Context Selection for Run-to-Run Control
,”
IEEE Trans. Semicond. Manuf.
,
20
(
4
), pp.
506
516
.
226.
Bian
,
J.
, and
Pan
,
T.
,
2014
, “
Mixed-Product Run to Run Control Algorithm Using Bayesian Method
,” 11th World Congress on Intelligent Control and Automation (
WCICA
), Shenyang, China, June 29–July 4, pp.
4356
4360
.
227.
Pasadyn
,
A. J.
, and
Edgar
,
T. F.
,
2005
, “
Observability and State Estimation for Multiple Product Control in Semiconductor Manufacturing
,”
IEEE Trans. Semicond. Manuf.
,
18
(
4
), pp.
592
604
.
228.
Harirchi
,
F.
,
Vincent
,
T.
,
Subramanian
,
A.
,
Poolla
,
K.
, and
Stirton
,
B.
,
2013
, “
Implementation of Nonthreaded Estimation for Run-to-Run Control of High Mix Semiconductor Manufacturing
,”
IEEE Trans. Semicond. Manuf.
,
26
(
4
), pp.
516
528
.
229.
Yelverton
,
M. E.
, and
Agrawal
,
G. K.
,
2014
, “
Lithography Run-to-Run Control in High Mix Manufacturing Environment With a Dynamic State Estimation Approach
,”
Proc. SPIE
,
9050
, p. 90500Q.
230.
Ding
,
Y.
,
Jin
,
J.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2005
, “
Process-Oriented Tolerancing for Multi-Station Assembly Systems
,”
IIE Trans.
,
37
(
6
), pp.
493
508
.
231.
Mantripragada
,
R.
, and
Whitney
,
D. E.
,
1999
, “
Modeling and Controlling Variation Propagation in Mechanical Assemblies Using State Transition Models
,”
IEEE Trans. Rob. Autom.
,
15
(
1
), pp.
124
140
.
232.
Hu
,
S. J.
, and
Koren
,
Y.
,
1997
, “
Stream-of-Variation Theory for Automotive Body Assembly
,”
CIRP Ann. Manuf. Technol.
,
46
(
1
), pp.
1
6
.
233.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2000
, “
Modeling and Diagnosis of Multistage Manufacturing Processes—Part 1: State Space Model
,”
JAPAN/USA Symposium on Flexible Automation
, Ann Arbor, MI, July 23–26, pp.
1
8
.
234.
Zhong
,
J.
,
2009
, “Manufacturing System Variation Reduction Through Feed-Forward Control Considering Model Uncertainties,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.
235.
Jiao
,
Y.
, and
Djurdjanovic
,
D.
,
2011
, “
Compensability of Errors in Product Quality in Multistage Manufacturing Processes
,”
J. Manuf. Syst.
,
30
(
4
), pp.
204
213
.
236.
Djurdjanovic
,
D.
, and
Zhu
,
J.
,
2005
, “Stream of Variation Based Error Compensation Strategy in Multi-Stage Manufacturing Processes,”
ASME
Paper No. IMECE2005-81550.
237.
Djurdjanovic
,
D.
, and
Ni
,
J.
,
2001
, “
Stream of Variation Based Analysis and Synthesis of Measurement Schemes in Multi-Station Machining Systems
,”
ASME International Mechanical Engineering Congress and Exposition
(
IMECE
), New York, Nov. 11–16, pp.
297
304
.
238.
Huang
,
Q.
,
Zhou
,
N.
, and
Shi
,
J.
,
2000
, “
Stream of Variation Modeling and Diagnosis of Multi-Station Machining Processes
,”
ASME International Mechanical Engineering Congress and Exposition
(
IMECE
), Orlando, FL, Nov. 5–10, pp.
81
88
.
239.
Nguyen
,
D. S.
,
2015
, “
Application of Bayesian Networks for Product Quality Management in a Multistage Manufacturing Process
,”
IEEE International Conference on Industrial Engineering and Engineering Management
(
IEEM
), Singapore, Dec. 6–9, pp.
1402
1406
.
240.
Djurdjanovic
,
D.
, and
Ni
,
J.
,
2007
, “
Online Stochastic Control of Dimensional Quality in Multistation Manufacturing Systems
,”
Proc. Inst. Mech. Eng., Part B
,
221
(
5
), pp.
865
880
.
241.
Fenner
,
J. S.
,
Jeong
,
M. K.
, and
Lu
,
J.-C.
,
2005
, “
Optimal Automatic Control of Multistage Production Processes
,”
IEEE Trans. Semicondutor Manuf.
,
18
(
1
), pp.
94
103
.
242.
Wang
,
P.
,
Zhang
,
D.
,
Li
,
S.
, and
Chen
,
B.
,
2012
, “
Machining Error Control by Integrating Multivariate Statistical Process Control and Stream of Variations Methodology
,”
Chin. J. Aeronaut.
,
25
(
6
), pp.
937
947
.
243.
Interworld Highway, 2017, “The Basics Predictive/Preventive Maintenance,” Interworld Highway, Long Branch, NJ, accessed Feb. 15, 2017, www.tequipment.net/pdf/Fluke/Ti30predictive_maint.pdf
244.
Li
,
L.
,
You
,
M.
, and
Ni
,
J.
,
2009
, “
Reliability-Based Dynamic Maintenance Threshold for Failure Prevention of Continuously Monitored Degrading Systems
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031010
.
245.
Sun
,
J.
,
Li
,
L.
, and
Xi
,
L.
,
2012
, “
Modified Two-Stage Degradation Model for Dynamic Maintenance Threshold Calculation Considering Uncertainty
,”
IEEE Trans. Autom. Sci. Eng.
,
9
(
1
), pp.
209
212
.
246.
Xia
,
T.
,
Xi
,
L.
,
Zhou
,
X.
, and
Lee
,
J.
,
2012
, “
Dynamic Maintenance Decision-Making for Series–Parallel Manufacturing System Based on MAM–MTW Methodology
,”
Eur. J. Oper. Res.
,
221
(
1
), pp.
231
240
.
247.
Bashiri
,
M.
,
Badri
,
H.
, and
Hejazi
,
T. H.
,
2011
, “
Selecting Optimum Maintenance Strategy by Fuzzy Interactive Linear Assignment Method
,”
Appl. Math. Modell.
,
35
(
1
), pp.
152
164
.
248.
You
,
M.-Y.
,
Liu
,
F.
,
Wang
,
W.
, and
Meng
,
G.
,
2010
, “
Statistically Planned and Individually Improved Predictive Maintenance Management for Continuously Monitored Degrading Systems
,”
IEEE Trans. Reliab.
,
59
(
4
), pp.
744
753
.
249.
Rafiee
,
K.
,
Feng
,
Q.
, and
Coit
,
D. W.
,
2015
, “
Condition-Based Maintenance for Repairable Deteriorating Systems Subject to a Generalized Mixed Shock Model
,”
IEEE Trans. Reliab.
,
64
(
4
), pp.
1164
1174
.
250.
Fan
,
H.
,
Hu
,
C.
,
Chen
,
M.
, and
Zhou
,
D.
,
2011
, “
Cooperative Predictive Maintenance of Repairable Systems With Dependent Failure Modes and Resource Constraint
,”
IEEE Trans. Reliab.
,
60
(
1
), pp.
144
157
.
251.
You
,
M.-Y.
,
Li
,
H.
, and
Meng
,
G.
,
2011
, “
Control-Limit Preventive Maintenance Policies for Components Subject to Imperfect Preventive Maintenance and Variable Operational Conditions
,”
Reliab. Eng. Syst. Safety
,
96
(
5
), pp.
590
598
.
252.
Wang
,
X.
,
Wang
,
H.
, and
Qi
,
C.
,
2016
, “
Multi-Agent Reinforcement Learning Based Maintenance Policy for a Resource Constrained Flow Line System
,”
J. Intell. Manuf.
,
27
(
2
), pp.
325
333
.
253.
Kenné
,
J. P.
,
Gharbi
,
A.
, and
Beit
,
M.
,
2007
, “
Age-Dependent Production Planning and Maintenance Strategies in Unreliable Manufacturing Systems With Lost Sale
,”
Eur. J. Oper. Res.
,
178
(
2
), pp.
408
420
.
254.
Li
,
L.
,
Chang
,
Q.
,
Ni
,
J.
, and
Biller
,
S.
,
2009
, “
Real Time Production Improvement Through Bottleneck Control
,”
Int. J. Prod. Res.
,
47
(
21
), pp.
6145
6158
.
255.
Costa
,
A.
,
Alfieri
,
A.
,
Matta
,
A.
, and
Fischera
,
S.
,
2015
, “
A Parallel Tabu Search for Solving the Primal Buffer Allocation Problem in Serial Production Systems
,”
Comput. Oper. Res.
,
64
, pp.
97
112
.
256.
Karakas
,
E.
,
Koyuncu
,
M.
,
Erol
,
R.
, and
Kokangul
,
A.
,
2010
, “
Fuzzy Programming for Optimal Product Mix Decisions Based on Expanded ABC Approach
,”
Int. J. Prod. Res.
,
48
(
3
), pp.
729
744
.
257.
Jodlbauer
,
H.
,
2008
, “
Customer Driven Production Planning
,”
Int. J. Prod. Econ.
,
111
(
2
), pp.
793
801
.
258.
Liu
,
X.
, and
Tu
,
Y.
,
2008
, “
Production Planning With Limited Inventory Capacity and Allowed Stockout
,”
Int. J. Prod. Econ.
,
111
(
1
), pp.
180
191
.
259.
Leung
,
S. C. H.
,
Tseng
,
S. O. S.
,
Ng
,
W. L.
, and
Wu
,
Y.
,
2007
, “
A Robust Optimization Model for Multi-Site Production Planning Problem in an Uncertain Environment
,”
Eur. J. Oper. Res.
,
181
(
1
), pp.
224
238
.
260.
Brahimi
,
N.
,
Tarik
,
A.
, and
Aghezzaf
,
E.-H.
,
2015
, “
Integrating Order Acceptance Decisions With Flexible Due Dates in a Production Planning Model With Load-Dependent Lead Times
,”
Int. J. Prod. Res.
,
53
(
12
), pp.
3810
3822
.
261.
Xu
,
L.
,
Wang
,
Q.
, and
Huang
,
S.
,
2015
, “
Dynamic Order Acceptance and Scheduling Problem With Sequence-Dependent Setup Time
,”
Int. J. Prod. Res.
,
53
(
19
), pp.
5797
5808
.
262.
Shen
,
J.-N.
,
Wang
,
L.
, and
Wang
,
S.-Y.
,
2015
, “
A Bi-Population EDA for Solving the No-Idle Permutation Flow-Shop Scheduling Problem With the Total Tardiness Criterion
,”
Knowl. Based Syst.
,
74
, pp.
167
175
.
263.
Lin
,
S.-W.
, and
Ying
,
K.-C.
,
2015
, “
Optimization of Makespan for No-Wait Flowshop Scheduling Problems Using Efficient Matheuristics
,”
Omega
,
64
, pp.
115
125
.
264.
Taillard
,
E.
,
1990
, “
Some Efficient Heuristic Methods for the Flow Shop Sequencing Problem
,”
Eur. J. Oper. Res.
,
47
(
1
), pp.
65
74
.
265.
Fernandez-Viagas
,
V.
, and
Framinan
,
J. M.
,
2015
, “
Efficient Non-Population-Based Algorithms for the Permutation Flowshop Scheduling Problem With Makespan Minimisation Subject to a Maximum Tardiness
,”
Comput. Oper. Res.
,
64
, pp.
86
96
.
266.
Behnamian
,
J.
, and
Ghomi
,
F.
,
2011
, “
Hybrid Flowshop Scheduling With Machine and Resource-Dependent Processing Times
,”
Appl. Math. Modell.
,
35
(
3
), pp.
1107
1123
.
267.
Mansouri
,
S. A.
,
Aktas
,
E.
, and
Besikci
,
U.
,
2016
, “
Green Scheduling of a Two-Machine Flowshop: Trade-off Between Makespan and Energy Consumption
,”
Eur. J. Oper. Res.
,
248
(
3
), pp.
772
788
.
268.
Jin
,
X.
,
Li
,
L.
, and
Ni
,
J.
,
2009
, “
Option Model for Joint Production and Preventive Maintenance System
,”
Int. J. Prod. Econ.
,
119
(
2
), pp.
347
353
.
269.
Nourelfath
,
M.
,
Nahas
,
N.
, and
Ben-Daya
,
M.
,
2016
, “
Integrated Preventive Maintenance and Production Decisions for Imperfect Processes
,”
Reliab. Eng. Syst. Safety
,
148
, pp.
21
31
.
270.
Xiao
,
L.
,
Song
,
S.
,
Chen
,
X.
, and
Coit
,
D. W.
,
2016
, “
Joint Optimization of Production Scheduling and Machine Group Preventive Maintenance
,”
Reliab. Eng. Syst. Safety
,
146
, pp.
68
78
.
271.
Xia
,
T.
,
Jin
,
X.
, and
Ni
,
J.
,
2015
, “
Production-Driven Opportunistic Maintenance for Batch Production Based on MAM–APB Scheduling
,”
Eur. J. Oper. Res.
,
240
(
3
), pp.
781
790
.
272.
Beheshti-Fakher
,
H.
,
Nourelfath
,
M.
, and
Gendreau
,
M.
,
2016
, “
Joint Planning of Production and Maintenance in a Single Machine Deteriorating System
,”
IFAC-PapersOnLine
,
49
(
12
), pp.
745
750
.
273.
Fitouhi
,
M.-C.
, and
Nourelfath
,
M.
,
2014
, “
Integrating Noncyclical Preventive Maintenance Scheduling and Production Planning for Multi-State Systems
,”
Reliab. Eng. Syst. Saf.
,
121
, pp.
175
186
.
274.
Papakostas
,
N.
,
Michalos
,
G.
,
Makris
,
S.
,
Zouzias
,
D.
, and
Chrisolouris
,
G.
,
2011
, “
Industrial Applications With Cooperating Robots for Flexible the Assembly
,”
Int. J. Comput. Integr. Manuf.
,
24
(
7
), pp.
650
660
.
275.
Jonsson
,
M.
, and
Ossbahr
,
G.
,
2010
, “
Aspects of Reconfigurable and Flexible Fixtures
,”
Prod. Eng.
,
4
(
4
), pp.
333
339
.
276.
Wang
,
K.
,
Zhang
,
C.
, and
Xu
,
X.
,
2013
, “
A CNC System Based on Real-Time Ethernet and Windows NT
,”
Int. J. Adv. Manuf. Technol.
,
65
(
9
), pp.
1383
1395
.
277.
Xu
,
X.
,
Sheng
,
X.
,
Xiong
,
Z.
, and
Zhu
,
X.
,
2011
, “
Time-Stamped Cross-Coupled Control in Networked CNC Systems
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
4378
4383
.
You do not currently have access to this content.