One of the key barriers to widespread adoption of additive manufacturing (AM) for metal parts is the build-up of residual stresses. In the laser-based powder bed fusion process, a laser selectively fuses metal powder layer by layer, generating significant temperature gradients that cause residual stress within the part. This can lead to parts exceeding tolerances and experiencing severe deformations. In order to develop strategies to reduce the adverse effects of these stresses, the stresses first need to be quantified. Cylindrical Nickel Alloy 625 samples were designed with varied outer diameters, inner diameters, and heights. Neutron diffraction was used to characterize the three-dimensional (3D) stress state throughout the parts. The stress state of the parts was generally comprised of tensile exteriors and compressive interiors. Regardless of part height, only the topmost scan height of each part experienced large reductions in axial and hoop stress. Improved understanding of the residual stress trends will aid in model development and validation leading to techniques to reduce negative effects of the residual stress.

References

References
1.
Withers
,
P. J.
, and
Bhadeshia
,
H.
,
2001
, “
Residual Stress—Part 1: Measurement Techniques
,”
Mater. Sci. Technol.
,
17
(
4
), pp.
355
365
.
2.
Nickel
,
A. H.
,
Barnett
,
D. M.
, and
Prinz
,
F. B.
,
2001
, “
Thermal Stresses and Deposition Patterns in Layered Manufacturing
,”
Mater. Sci. Eng. A
,
317
(
1–2
), pp.
59
64
.
3.
Beuth
,
J.
, and
Klingbeil
,
N.
,
2001
, “
The Role of Process Variables in Laser-Based Direct Metal Solid Freeform Fabrication
,”
JOM
,
53
(
9
), pp.
36
39
.
4.
Mercelis
,
P.
, and
Kruth
,
J.-P.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyping J.
,
12
(
5
), pp.
254
265
.
5.
Vasinonta
,
A.
,
Beuth
,
J. L.
, and
Griffith
,
M.
,
2007
, “
Process Maps for Predicting Residual Stress and Melt Pool Size in the Laser-Based Fabrication of Thin-Walled Structures
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
101
109
.
6.
Wu
,
A. S.
,
Brown
,
D. W.
,
Kumar
,
M.
,
Gallegos
,
G. F.
, and
King
,
W. E.
,
2014
, “
An Experimental Investigation Into Additive Manufacturing-Induced Residual Stresses in 316 L Stainless Steel
,”
Metall. Mater. Trans. A
,
45
(
13
), pp.
6260
6270
.
7.
Gnäupel-Herold
,
T.
,
Slotwinski
,
J.
, and
Moylan
,
S.
,
2014
, “
Neutron Measurements of Stresses in a Test Artifact Produced by Laser-Based Additive Manufacturing
,”
AIP Conf. Proc.
,
1205
, pp.
1205
1212
.
8.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Humbeeck
,
J. V.
, and
Kruth
,
J.-P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
.
9.
Mishurova
,
T.
,
Cabeza
,
S.
,
Artzt
,
K.
,
Haubrich
,
J.
,
Klaus
,
M.
,
Genzel
,
C.
,
Requena
,
G.
, and
Bruno
,
G.
,
2017
, “
An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V
,”
Materials
,
10
(
4
), p.
348
.
10.
Gusarov
,
A. V.
,
Pavlov
,
M.
, and
Smurov
,
I.
,
2011
, “
Residual Stresses at Laser Surface Remelting and Additive Manufacturing
,”
Phys. Proc.
,
12
(Pt. A), pp.
248
254
.
11.
Foroozmehr
,
E.
, and
Kovacevic
,
R.
,
2010
, “
Effect of Path Planning on the Laser Powder Deposition Process: Thermal and Structural Evaluation
,”
Int. J. Adv. Manuf. Technol.
,
51
(
5–8
), pp.
659
669
.
12.
Zaeh
,
M. F.
, and
Branner
,
G.
,
2010
, “
Investigations on Residual Stresses and Deformations in Selective Laser Melting
,”
Prod. Eng.
,
4
(
1
), pp.
35
45
.
13.
Mughal
,
M. P.
,
Fawad
,
H.
, and
Mufti
,
R.
,
2006
, “
Finite Element Prediction of Thermal Stresses and Deformations in Layered Manufacturing of Metallic Parts
,”
Acta Mech.
,
183
(
1–2
), pp.
61
79
.
14.
Denlinger
,
E. R.
,
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Palmer
,
T. A.
,
2015
, “
Effect of Inter-Layer Dwell Time on Distortion and Residual Stress in Additive Manufacturing of Titanium and Nickel Alloys
,”
J. Mater. Process. Technol.
,
215
, pp.
123
131
.
15.
Somashekara
,
M. A.
,
Naveenkumar
,
M.
,
Kumar
,
A.
,
Viswanath
,
C.
, and
Simhambhatla
,
S.
,
2016
, “
Investigations Into Effect of Weld-Deposition Pattern on Residual Stress Evolution for Metallic Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
90
(
5–8
), pp.
2009
2025
.
16.
Brown
,
D. W.
,
Bernardin
,
J. D.
,
Carpenter
,
J. S.
,
Clausen
,
B.
,
Spernjak
,
D.
, and
Thompson
,
J. M.
,
2016
, “
Neutron Diffraction Measurements of Residual Stress in Additively Manufactured Stainless Steel
,”
Mater. Sci. Eng. A
,
678
, pp.
291
298
.
17.
Parry
,
L.
,
Ashcroft
,
I.
,
Bracket
,
D.
, and
Wildman
,
R. D.
,
2014
, “
Investigation of Residual Stresses in Selective Laser Melting
,”
Key Eng. Mater.
,
627
, pp.
129
132
.
18.
van Belle
,
L.
,
Vansteenkiste
,
G.
, and
Boyer
,
J. C.
,
2013
, “
Investigation of Residual Stresses Induced During the Selective Laser Melting Process
,”
Key Eng. Mater.
,
554–557
, pp.
1828
1834
.
19.
Sochalski-Kolbus
,
L. M.
,
Payzant
,
E. A.
,
Cornwell
,
P. A.
,
Watkins
,
T. R.
,
Babu
,
S. S.
,
Dehoff
,
R. R.
,
Lorenz
,
M.
,
Ovchinnikova
,
O.
, and
Duty
,
C.
,
2015
, “
Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and Direct Laser Metal Sintering
,”
Metall. Mater. Trans. A
,
46
(
3
), pp.
1419
1432
.
20.
Cottam
,
R.
,
Wang
,
J.
, and
Luzin
,
V.
,
2014
, “
Characterization of Microstructure and Residual Stress in a 3D H13 Tool Steel Component Produced by Additive Manufacturing
,”
J. Mater. Res.
,
29
(
17
), pp.
1978
1986
.
21.
Withers
,
P. J.
, and
Bhadeshia
,
H.
,
2001
, “
Residual Stress. Part 2–Nature and Origins
,”
Mater. Sci. Technol.
,
17
(
4
), pp.
366
375
.
22.
Rangaswamy
,
P.
,
Griffith
,
M. L.
,
Prime
,
M. B.
,
Holden
,
T. M.
,
Rogge
,
R. B.
,
Edwards
,
J. M.
, and
Sebring
,
R. J.
,
2005
, “
Residual Stresses in LENS® Components Using Neutron Diffraction and Contour Method
,”
Mater. Sci. Eng. A
,
399
(
1–2
), pp.
72
83
.
23.
Vrancken
,
B.
,
Thijs
,
L.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2012
, “
Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties
,”
J. Alloys Compd.
,
541
, pp.
177
185
.
24.
Moat
,
R. J.
,
Pinkerton
,
A. J.
,
Li
,
L.
,
Withers
,
P. J.
, and
Preuss
,
M.
,
2011
, “
Residual Stresses in Laser Direct Metal Deposited Waspaloy
,”
Mater. Sci. Eng. A
,
528
(
6
), pp.
2288
2298
.
25.
Simonelli
,
M.
,
Tse
,
Y. Y.
, and
Tuck
,
C.
,
2014
, “
Effect of the Build Orientation on the Mechanical Properties and Fracture Modes of SLM Ti–6Al–4V
,”
Mater. Sci. Eng. A
,
616
, pp.
1
11
.
26.
Song
,
B.
,
Dong
,
S.
,
Liu
,
Q.
,
Liao
,
H.
, and
Coddet
,
C.
,
2014
, “
Vacuum Heat Treatment of Iron Parts Produced by Selective Laser Melting: Microstructure, Residual Stress and Tensile Behavior
,”
Mater. Des.
,
54
, pp.
727
733
.
27.
Hoye
,
N.
,
Li
,
H. J.
,
Cuiuri
,
D.
, and
Paradowska
,
A. M.
,
2014
, “
Measurement of Residual Stresses in Titanium Aerospace Components Formed Via Additive Manufacturing
,”
Mater. Sci. Forum
,
777
, pp.
124
129
.
28.
Vrancken
,
B.
,
Cain
,
V.
,
Knutsen
,
R.
, and
Van Humbeeck
,
J.
,
2014
, “
Residual Stress Via the Contour Method in Compact Tension Specimens Produced Via Selective Laser Melting
,”
Scr. Mater.
,
87
, pp.
29
32
.
29.
Shiomi
,
M.
,
Osakada
,
K.
,
Nakamura
,
K.
,
Yamashita
,
T.
, and
Abe
,
F.
,
2004
, “
Residual Stress Within Metallic Model Made by Selective Laser Melting Process
,”
CIRP Ann.-Manuf. Technol.
,
53
(
1
), pp.
195
198
.
30.
Casavola
,
C.
,
Carnpanelli
,
S. L.
, and
Pappalettere
,
C.
,
2009
, “
Preliminary Investigation on Distribution of Residual Stress Generated by the Selective Laser Melting Process
,”
J. Strain Anal. Eng. Des.
,
44
(
1
), pp.
93
104
.
31.
Vrancken
,
B.
,
Wauthlé
,
R.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2013
, “
Study of the Influence of Material Properties on Residual Stress in Selective Laser Melting
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 12–14, p.
393
.https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-31-Vrancken.pdf
32.
Szost
,
B. A.
,
Terzi
,
S.
,
Martina
,
F.
,
Boisselier
,
D.
,
Prytuliak
,
A.
,
Pirling
,
T.
,
Hofmann
,
M.
, and
Jarvis
,
D. J.
,
2016
, “
A Comparative Study of Additive Manufacturing Techniques: Residual Stress and Microstructural Analysis of CLAD and WAAM Printed Ti–6Al–4V Components
,”
Mater. Des.
,
89
, pp.
559
567
.
33.
Luzin
,
V.
, and
Hoye
,
N.
,
2017
, “Stress in Thin Wall Structures Made by Layer Additive Manufacturing,”
Mater. Res. Proc.
,
2
, pp.
497
502
.http://ro.uow.edu.au/eispapers/6583/
34.
Kruth
,
J.-P.
,
Deckers
,
J.
,
Yasa
,
E.
, and
Wauthle
,
R.
,
2012
, “
Assessing and Comparing Influencing Factors of Residual Stresses in Selective Laser Melting Using a Novel Analysis Method
,”
Proc. Inst. Mech. Eng., Part B
,
226
(
6
), pp.
980
991
.
35.
Gu
,
D.
, and
He
,
B.
,
2016
, “
Finite Element Simulation and Experimental Investigation of Residual Stresses in Selective Laser Melted Ti–Ni Shape Memory Alloy
,”
Comput. Mater. Sci.
,
117
, pp.
221
232
.
36.
Hodge
,
N. E.
,
Ferencz
,
R. M.
, and
Vignes
,
R. M.
,
2016
, “
Experimental Comparison of Residual Stresses for a Thermomechanical Model for the Simulation of Selective Laser Melting
,”
Addit. Manuf.
,
12
(
Pt. B
), pp.
159
168
.
37.
Fergani
,
O.
,
Berto
,
F.
,
Welo
,
T.
, and
Liang
,
S. Y.
,
2016
, “
Analytical Modelling of Residual Stress in Additive Manufacturing
,”
Fatigue Fract. Eng. Mater. Struct.
,
40
(
6
), pp.
971
978
.
38.
Mukherjee
,
T.
,
Zhang
,
W.
, and
DebRoy
,
T.
,
2017
, “
An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing
,”
Comput. Mater. Sci.
,
126
, pp.
360
372
.
39.
Ding
,
J.
,
Colegrove
,
P.
,
Mehnen
,
J.
,
Williams
,
S.
,
Wang
,
F.
, and
Almeida
,
P. S.
,
2014
, “
A Computationally Efficient Finite Element Model of Wire and Arc Additive Manufacture
,”
Int. J. Adv. Manuf. Technol.
,
70
(
1–4
), pp.
227
236
.
40.
Hodge
,
N. E.
,
Ferencz
,
R. M.
, and
Solberg
,
J. M.
,
2014
, “
Implementation of a Thermomechanical Model for the Simulation of Selective Laser Melting
,”
Comput. Mech.
,
54
(
1
), pp.
33
51
.
41.
Schilp
,
J.
,
Seidel
,
C.
,
Krauss
,
H.
, and
Weirather
,
J.
,
2015
, “
Investigations on Temperature Fields During laser beam Melting by Means of Process Monitoring and Multiscale Process Modelling
,”
Adv. Mech. Eng.
,
6
, p.
217584
.
42.
Bai
,
X.
,
Zhang
,
H.
, and
Wang
,
G.
,
2014
, “
Modeling of the Moving Induction Heating Used as Secondary Heat Source in Weld-Based Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
77
(
1–4
), pp.
717
727
.
43.
Zohdi
,
T. I.
,
2015
, “
Modeling and Simulation of Cooling-Induced Residual Stresses in Heated Particulate Mixture Depositions in Additive Manufacturing
,”
Comput. Mech.
,
56
(
4
), pp.
613
630
.
44.
Wang
,
Z.
,
Denlinger
,
E.
,
Michaleris
,
P.
,
Stoica
,
A. D.
,
Ma
,
D.
, and
Beese
,
A. M.
,
2017
, “
Residual Stress Mapping in Inconel 625 Fabricated Through Additive Manufacturing: Method for Neutron Diffraction Measurements to Validate Thermomechanical Model Predictions
,”
Mater. Des.
,
113
, pp.
169
177
.
45.
Masoomi
,
M.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2017
, “
Laser Powder Bed Fusion of Ti-6Al-4V Parts: Thermal Modeling and Mechanical Implications
,”
Int. J. Mach. Tools Manuf.
,
118–119
, pp.
73
90
.
46.
Li
,
C.
,
Fu
,
C. H.
,
Guo
,
Y. B.
, and
Fang
,
F. Z.
,
2016
, “
A Multiscale Modeling Approach for Fast Prediction of Part Distortion in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
229
, pp.
703
712
.
47.
Liou
,
F.
,
Newkirk
,
J.
,
Fan
,
Z.
,
Sparks
,
T.
,
Chen
,
X.
,
Fletcher
,
K.
,
Zhang
,
J.
,
Zhang
,
Y.
,
Kumar
,
K. S.
, and
Karnati
,
S.
,
2015
, “Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials,” NASA Langley Research Center, Hampton, VA, Technical, Report No.
NASA/CR-2015-218691
.https://ntrs.nasa.gov/search.jsp?R=20150003789
48.
ASTM International,
2016
, “Standard Terminology for Additive Manufacturing—General Principles-Terminology,” ASTM International, West Conshohocken, PA, Standard No.
ISO/ASTM52900-1
.https://www.astm.org/Standards/ISOASTM52900.htm
49.
Kelly
,
S.
,
2014
, “Volume 1: Development of Mechanical Property Data for Laser Powder Bed Fusion Additive Manufacturing of Nickel Alloy 625,” EWI, Columbus, OH, Technical, Report No.
53776GTH
.https://ewi.org/eto/wp-content/uploads/2015/04/70NANB12H264_Final_Tech_Report_EWI_53776GTH_Distribution_Vol_1.pdf
50.
Idell
,
Y.
,
Levine
,
L. E.
,
Allen
,
A. J.
,
Zhang
,
F.
,
Campbell
,
C. E.
,
Olson
,
G. B.
,
Gong
,
J.
,
Snyder
,
D. R.
, and
Deutchman
,
H. Z.
,
2016
, “
Unexpected δ-Phase Formation in Additive-Manufactured Ni-Based Superalloy
,”
JOM
,
68
(
3
), pp.
950
959
.
51.
Ali
,
H.
,
Ma
,
L.
,
Ghadbeigi
,
H.
, and
Mumtaz
,
K.
,
2017
, “
In-Situ Residual Stress Reduction, Martensitic Decomposition and Mechanical Properties Enhancement Through High Temperature Powder Bed Pre-Heating of Selective Laser Melted Ti6Al4V
,”
Mater. Sci. Eng. A
,
695
, pp.
211
220
.
52.
Dunbar
,
A. J.
,
Denlinger
,
E. R.
,
Heigel
,
J.
,
Michaleris
,
P.
,
Guerrier
,
P.
,
Martukanitz
,
R.
, and
Simpson
,
T. W.
,
2016
, “
Development of Experimental Method for in Situ Distortion and Temperature Measurements During the Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
12
(Pt. A), pp.
25
30
.
You do not currently have access to this content.