Ultrasonic-assisted machining, which is the application of ultrasonic vibrations to standard or “conventional” machine tools for processes such as drilling, milling, and turning, is a rapidly developing technology aimed at increasing the productivity of machining processes. While a solid foundation is being established through laboratory-based research studies, typically these processes have not yet progressed to fulfill the demanding requirements of the factory floor. The objective of the current work is to transition the ultrasonic-assisted drilling (UAD) process from the laboratory to a production system compatible with automated machining systems. This work details the design and development of an ultrasonic drilling module that has sufficient strength, stiffness, and accuracy for production demands, while maintaining powerful levels of ultrasonic vibrations that result in lowered drilling forces and faster feed rates. In addition, this work will review prior work in UAD, including the development of a module based on a vibration-isolating case using a standard tool holder. Performance of the system is shown to provide thrust force reductions, while maintaining or improving surface finish and drilling accuracy. The results from drilling several materials are presented.

References

1.
Short
,
M. A.
, and
Graff
,
K. F.
,
2014
, “
Using Power Ultrasonics in Machine Tools
,”
Power Ultrasonics: Applications of High-Intensity Ultrasound
,
J
. A.
Gallego-Juárez
and
K
.
F.
Graff
, eds.,
Elsevier
, Cambridge, UK, pp.
439
507
.
2.
Amini
,
S.
,
Paktinat
,
H.
,
Barani
,
A.
, and
Tehran
,
A. F.
,
2013
, “
Vibration Drilling of Al2024-T6
,”
Mater. Manuf. Processes
,
28
(
4
), pp.
476
480
.
3.
Babitsky
,
V. I.
,
Astashev
,
V. K.
, and
Meadows
,
A.
,
2007
, “
Vibration Excitation and Energy Transfer During Ultrasonically Assisted Drilling
,”
J. Sound Vib.
,
308
(
3–5
), pp.
805
814
.
4.
Barani
,
A.
,
Amini
,
S.
,
Paktinat
,
H.
, and
Fadaei Tehran
,
I. A.
,
2014
, “
Built-Up Edge Investigation in Vibration Drilling of Al2024-T6
,”
Ultrasonics
,
54
(
5
), pp.
1300
1310
.
5.
Chang
,
S. S. F.
, and
Bone
,
G. M.
,
2005
, “
Burr Size Reduction in Drilling by Ultrasonic Assistance
,”
Rob. Comput.-Integr. Manuf.
,
21
(
4–5
), pp.
442
450
.
6.
Chang
,
S. S. F.
, and
Bone
,
G. M.
,
2009
, “
Thrust Force Model for Vibration-Assisted Drilling of Aluminum 6061-T6
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1070
1076
.
7.
Chang
,
S. S. F.
, and
Bone
,
G. M.
,
2010
, “
Burr Height Model for Vibration Assisted Drilling of Aluminum 6061-T6
,”
Precis. Eng.
,
34
(
3
), pp.
369
375
.
8.
Azghandi
,
V. B.
, and
Razfar
,
M. R.
,
2011
, “
An Experimental Study on the Effects of Ultrasonic Assisted Drilling on Chip Characteristics and Tool Life
,”
Adv. Mater. Res.
,
325
, pp.
351
356
.
9.
Hsu
,
I.
, and
Tsao
,
C. C.
,
2009
, “
Study on the Effect of Frequency Tracing in Ultrasonic-Assisted Drilling of Titanium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
43
(
1–2
), pp.
127
135
.
10.
Pujana
,
J.
,
Rivero
,
A.
,
Celaya
,
A.
, and
Lopez De Lacalle
,
L. N.
,
2009
, “
Analysis of Ultrasonic-Assisted Drilling of Ti6Al4V
,”
Int. J. Mach. Tools Manuf.
,
49
(
6
), pp.
500
508
.
11.
Baghlani
,
V.
,
Mehbudi
,
P.
,
Akbari
,
J.
, and
Sohrabi
,
M.
,
2013
, “
Ultrasonic Assisted Deep Drilling of Inconel 738lc Superalloy
,”
Procedia CIRP
,
6
(
1
), pp.
571
576
.
12.
Liao
,
Y. S.
,
Chen
,
Y. C.
, and
Lin
,
H. M.
,
2007
, “
Feasibility Study of the Ultrasonic Vibration Assisted Drilling of Inconel Super Alloy
,”
Int. J. Mach. Tools Manuf.
,
47
(
12–13
), pp.
1988
1996
.
13.
Azarhoushang
,
B.
, and
Akbari
,
J.
,
2007
, “
Ultrasonic-Assisted Drilling of Inconel 738-LC
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1027
1033
.
14.
Phadnis
,
V. A.
,
Makhdum
,
F.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2012
, “
Experimental and Numerical Investigations in Conventional and Ultrasonically Assisted Drilling of CFRP Laminate
,”
Procedia CIRP
,
1
, pp.
455
459
.
15.
Phadnis
,
V. A.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2013
, “
A Finite Element Model of Ultrasonically Assisted Drilling in Carbon/Epoxy Composites
,”
Procedia CIRP
,
8
, pp.
141
146
.
16.
Mehbudi
,
P.
,
Baghlani
,
V.
,
Akbari
,
J.
,
Bushroa
,
A. R.
, and
Mardi
,
N. A.
,
2013
, “
Applying Ultrasonic Vibration to Decrease Drilling-Induced Delamination in GFRP Laminates
,”
Procedia CIRP
,
6
, pp.
577
582
.
17.
Makhdum
,
F.
,
Phandis
,
V. A.
,
Roy
,
A.
, and
Silberschmidt
,
V. V.
,
2014
, “
Effect of Ultrasonically-Assisted Drilling on Carbon-Fiber-Reinforced Plastics
,”
J. Sound Vib.
,
333
(23), pp.
5939
5952
.
18.
Alam
,
K.
, and
Mitrofanov
,
A. V.
,
2011
, “
Experimental Investigations of Forces and Torque in Conventional and Ultrasonically-Assisted Drilling of Cortical Bone
,”
Med. Eng. Phys.
,
33
(
2
), pp.
234
239
.
19.
Alam
,
K.
,
Edris
,
H.
, and
Issam
,
B.
,
2015
, “
Experimental Measurements of Temperatures in Ultrasonically Assisted Drilling of Cortical Bone
,”
Biotechnol. Biotechnol. Equip.
,
29
(
4
), pp.
753
757
.
20.
Moghaddas
,
M. A.
,
Short
,
M. A.
,
Wiley
,
N.
,
Yi
,
A. Y.
, and
Graff
,
K. G.
,
2017
, “
Performance of an Ultrasonic-Assisted Drilling Module
,”
Int. J. Adv. Manuf. Technol.
, epub.
21.
Short
,
M. A.
,
2010
, “
Recent Developments in Ultrasonic Machining
,” 39th Annual Symposium of the Ultrasonic Industry Association Symposium (UIA), Cambridge, MA, Apr. 12–14, pp. 1–10.
22.
Kennametal
,
2013
, “
Innovations Master Catalogue—Cutting Tools
,” Kennametal, Johnson City, TN, accessed Feb. 12, 2018, https://www.kennametal.com/hi/promotions/kennametal-master-catalog-2013.html
You do not currently have access to this content.