Accurate information about the evolution of the temperature field is a theoretical prerequisite for investigating grinding burn and optimizing the process parameters of grinding process. This paper proposed a new statistical model of equivalent grinding heat source with consideration of the random distribution of grains. Based on the definition of the Riemann integral, the summation limit of the discrete point heat sources was transformed into the integral of a continuous function. A finite element method (FEM) simulation was conducted to predict the grinding temperature field with the embedded net heat flux equation. The grinding temperature was measured with a specially designed in situ infrared system and was formulated by time–space processing. The reliability and correctness of the statistical heat source model were validated by both experimental temperature–time curves and the maximum grinding temperature, with a relative error of less than 20%. Finally, through the FEM-based inversed calculation, an empirical equation was proposed to describe the heat transfer coefficient (HTC) changes in the grinding contact zone for both conventional grinding and creep feed grinding.

References

References
1.
Lefebvre
,
A.
,
Vieville
,
P.
,
Lipinski
,
P.
, and
Lescalier
,
C.
,
2006
, “
Numerical Analysis of Grinding Temperature Measurement by the Foil/Workpiece Thermocouple Method
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1716
1726
.
2.
Jaeger
,
J. C.
,
1942
, “
Moving Sources of Heat and the Temperature of Sliding Contacts
,”
J. Proc. R. Soc. New South Wales
, 76, pp. 203–224.
3.
Mamalis
,
A.
,
Manolakos
,
D.
,
Markopoulos
,
A.
,
Kunádrk
,
J.
, and
Gyáni
,
K.
,
2003
, “
Thermal Modelling of Surface Grinding Using Implicit Finite Element Techniques
,”
Int. J. Adv. Manuf. Technol.
,
21
(
12
), pp.
929
934
.
4.
Lefebvre
,
A.
,
Lanzetta
,
F.
,
Lipinski
,
P.
, and
Torrance
,
A.
,
2012
, “
Measurement of Grinding Temperatures Using a Foil/Workpiece Thermocouple
,”
Int. J. Mach. Tools Manuf.
,
58
, pp.
1
10
.
5.
Rowe
,
W.
,
Black
,
S.
,
Mills
,
B.
,
Qi
,
H.
, and
Morgan
,
M.
,
1995
, “
Experimental Investigation of Heat Transfer in Grinding
,”
CIRP Ann. Manuf. Technol.
,
44
(
1
), pp.
329
332
.
6.
Liao
,
Y.
,
Luo
,
S.
, and
Yang
,
T.
,
2000
, “
A Thermal Model of the Wet Grinding Process
,”
J. Mater. Process. Technol.
,
101
(
1
), pp.
137
145
.
7.
Jiang
,
J.
,
Ge
,
P.
,
Sun
,
S.
,
Wang
,
D.
,
Wang
,
Y.
, and
Yang
,
Y.
,
2016
, “
From the Microscopic Interaction Mechanism to the Grinding Temperature Field: An Integrated Modelling on the Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
110
, pp.
27
42
.
8.
Dyakonov
,
A. A.
,
2014
, “Simulated Stochastic Thermo-Physical Model of Grinding Process,” World Congress on Engineering and Computer Science (
WCECS
), San Francisco, CA, Oct. 22–24, pp. 914–917http://www.iaeng.org/publication/WCECS2014/WCECS2014_pp871-875.pdf.
9.
Rumford
,
B. C. O.
,
1798
, “
An Inquiry Concerning the Source of the Heat Which Is Excited by Friction. By Benjamin Count of Rumford, FRSMRIA
,”
Philos. Trans. R. Soc. London Ser. I
,
88
, pp.
80
102
.
10.
Shore
,
H.
,
1924
,
Tool and Chip Temperatures in Machine Shop Practice
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
11.
Schwerd
,
F.
,
1933
, “
Determination of the Temperature Distribution During Cutting Z
,”
VDI Z.
,
77
, pp.
211
216
.
12.
Boothroyd
,
G.
,
1961
, “
Photographic Technique for the Determination of Metal Cutting Temperatures
,”
Br. J. Appl. Phys.
,
12
(
5
), p.
238
.
13.
Ueda
,
T.
,
Hosokawa
,
A.
, and
Yamamoto
,
A.
,
1986
, “
Measurement of Grinding Temperature Using Infrared Radiation Pyrometer With Optical Fiber
,”
ASME J. Eng. Ind.
,
108
(
4
), pp.
247
251
.
14.
Kato
,
T.
, and
Fujii
,
H.
,
1997
, “
Temperature Measurement of Workpiece in Surface Grinding by PVD Film Method
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4B
), pp.
689
694
.
15.
Yoshioka
,
H.
,
Hashizume
,
H.
, and
Shinn
,
H.
,
2004
, “
In-Process Microsensor for Ultraprecision Machining
,”
IEEE Proc. Sci., Meas. Technol.
,
151
(
2
), pp.
121
125
.
16.
Ueda
,
T.
,
Hosokawa
,
A.
, and
Yamamoto
,
A.
,
1985
, “
Studies on Temperature of Abrasive Grains in Grinding—Application of Infrared Radiation Pyrometer
,”
ASME J. Manuf. Sci. Eng.
,
107
(
2
), pp.
127
133
.
17.
Upadhyaya
,
R.
, and
Malkin
,
S.
,
2004
, “
Thermal Aspects of Grinding With Electroplated CBN Wheels
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
107
114
.
18.
Li
,
Z.
,
Ding
,
W.
,
Shen
,
L.
,
Xi
,
X.
, and
Fu
,
Y.
,
2016
, “
Comparative Investigation on High-Speed Grinding of TiCp/Ti–6Al–4V Particulate Reinforced Titanium Matrix Composites With Single-Layer Electroplated and Brazed CBN Wheels
,”
Chin. J. Aeronaut.
,
29
(
5
), pp.
1414
1424
.
19.
Chandrasekar
,
S.
,
Farris
,
T.
, and
Bhushan
,
B.
,
1990
, “
Grinding Temperatures for Magnetic Ceramics and Steel
,”
ASME J. Tribol.
,
112
(
3
), pp.
535
541
.
20.
Kops
,
L.
, and
Shaw
,
M. C.
,
1982
, “
Thermal Radiation in Surface Grinding
,”
CIRP Ann. Manuf. Technol.
,
31
(
1
), pp.
211
214
.
21.
Xu
,
X.
,
2001
, “
Experimental Study on Temperatures and Energy Partition at the Diamond–Granite Interface in Grinding
,”
Tribol. Int.
,
34
(
6
), pp.
419
426
.
22.
Hwang
,
J.
,
Kompella
,
S.
,
Chandrasekar
,
S.
, and
Farris
,
T. N.
,
2003
, “
Measurement of Temperature Field in Surface Grinding Using Infra-Red (IR) Imaging System
,”
ASME J. Tribol.
,
125
(
2
), pp.
377
383
.
23.
Jin
,
T.
,
Stephenson
,
D.
, and
Rowe
,
W.
,
2003
, “
Estimation of the Convection Heat Transfer Coefficient of Coolant Within the Grinding Zone
,”
Proc. Inst. Mech. Eng., Part B
,
217
(
3
), pp.
397
407
.
24.
Malkin
,
S. G. C.
,
2008
,
Grinding Technology: Theory and Applications of Machining With Abrasives
,
Industrial Press
,
South Norwalk, CT
.
25.
Ohbuchi
,
Y.
, and
Matsuo
,
T.
,
1991
, “
Force and Chip Formation in Single-Grit Orthogonal Cutting With Shaped CBN and Diamond Grains
,”
CIRP Ann. Manuf. Technol.
,
40
(
1
), pp.
327
330
.
26.
Outwater
,
J.
, and
Shaw
,
M.
,
1952
, “
Surface Temperatures in Grinding
,”
Trans. ASME
,
74
(
1
), p.
73
. https://ci.nii.ac.jp/naid/10010081046/
27.
Hahn
,
R. S.
,
1962
, “
On the Nature of the Grinding Process
,”
Third Machine Tool Design and Research Conference
, Birmingham, UK, Sept. 24–28, pp.
129
154.
28.
Lavine
,
A.
,
Malkin
,
S.
, and
Jen
,
T.
,
1989
, “
Thermal Aspects of Grinding With CBN Wheels
,”
CIRP Ann. Manuf. Technol.
,
38
(
1
), pp.
557
560
.
29.
Yan
,
L.
,
Rong
,
Y.
, and
Jiang
,
F.
,
2011
, “
Quantitative Evaluation and Modeling of Alumina Grinding Wheel Surface Topography
,”
Jixie Gongcheng Xuebao(Chin. J. Mech. Eng.)
,
47
(
17
), pp.
179
186
.
30.
Parente
,
M. P. L.
,
Jorge
,
R. M. N.
,
Vieira
,
A. A.
, and
Baptista
,
A. M.
,
2012
, “
Experimental and Numerical Study of the Temperature Field During Creep Feed Grinding
,”
Int. J. Adv. Manuf. Technol.
,
61
(
1–4
), pp.
127
134
.
31.
Nie
,
Z.
,
Wang
,
G.
,
Lin
,
Y.
, and
Rong
,
Y.
,
2015
, “
Precision Measurement and Modeling of Quenching-Tempering Distortion in Low-Alloy Steel Components With Internal Threads
,”
J. Mater. Eng. Perform.
,
24
(
12
), pp.
1
12
.
32.
Bergman
,
T. L.
,
2011
,
Introduction to Heat Transfer
,
Wiley
,
Hoboken, NJ
.
33.
Bergman
,
T. L.
, and
Incropera
,
F. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
34.
Khabari
,
A.
,
Zenouzi
,
M.
,
O'Connor
,
T.
, and
Rodas
,
A.
,
2014
, “
Natural and Forced Convective Heat Transfer Analysis of Nanostructured Surface
,” World Congress on Engineering (
WCE
), London, July 2–4. http://www.iaeng.org/publication/WCE2014/WCE2014_pp317-319.pdf
35.
Lavine
,
A. S.
,
1988
, “
A Simple Model for Convective Cooling During the Grinding Process
,”
ASME J. Eng. Ind.
,
110
(
1
), pp.
1
6
.
36.
Nie
,
Z.
,
Wang
,
G.
,
Yu
,
J.
,
Liu
,
D.
, and
Rong
,
Y.
,
2016
, “
Phase-Based Constitutive Modeling and Experimental Study for Dynamic Mechanical Behavior of Martensitic Stainless Steel Under High Strain Rate in a Thermal Cycle
,”
Mech. Mater.
,
101
, pp.
160
169
.
37.
Liu
,
D.
,
Wang
,
G.
,
Nie
,
Z.
, and
Rong
,
Y.
,
2016
, “
An In-Situ Infrared Temperature-Measurement Method With Back Focusing on Surface for Creep-Feed Grinding
,”
Measurement
,
94
, pp.
645
652
.
38.
Ichida
,
Y.
,
2001
, “
Creep Feed Profile Grinding of Ni-Based Superalloys With Ultrafine-Polycrystalline cBN Abrasive Grits
,”
Precision Eng.
,
25
(
4
), pp.
274
283
.
39.
Grigoriev
,
S. N.
,
Starkov
,
V. K.
,
Gorin
,
N. A.
,
Krajnik
,
P.
, and
Kopac
,
J.
,
2014
, “
Creep-Feed Grinding: An Overview of Kinematics, Parameters and Effects on Process Efficiency
,”
Strojniški Vestnik-J. Mech. Eng.
,
60
(
4
), pp.
213
220
.
40.
Kim
,
H.-J.
,
Kim
,
N.-K.
, and
Kwak
,
J.-S.
,
2006
, “
Heat Flux Distribution Model by Sequential Algorithm of Inverse Heat Transfer for Determining Workpiece Temperature in Creep Feed Grinding
,”
Int. J. Mach. Tools Manuf.
,
46
(
15
), pp.
2086
2093
.
41.
Du
,
P.
,
Wang
,
G.
,
Nie
,
Z.
, and
Rong
,
Y.
,
2014
, “
A FEM‐Based Inverse Calculation Method for Determination of Heat Transfer Coefficient in Liquid Quenching Process
,”
TMS 143rd Annual Meeting & Exhibition
, San Diego, CA, Feb. 16–20, p.
309
.
42.
Lin
,
B.
,
Morgan
,
M. N.
,
Chen
,
X. W.
, and
Wang
,
Y. K.
,
2009
, “
Study on the Convection Heat Transfer Coefficient of Coolant and the Maximum Temperature in the Grinding Process
,”
Int. J. Adv. Manuf. Technol.
,
42
(
11
), pp.
1175
1186
.
You do not currently have access to this content.