Thermal history and residual stresses in dissimilar friction stir welding (FSW) of AA2024 and AZ31 were studied under different tool offsets using a coupled Eulerian–Lagrangian (CEL) finite element model and a mechanical model. Welding experiments and residual stresses' measurements were conducted to validate the models. Comparisons between the experimental and numerical results indicated good agreement. The maximum temperature in the welded zone was predicted to be slightly lower than 400 °C, regardless of offset, and that its location shifted with tool offset from the advancing side (AS) to the retreating side (RS). Longitudinal residual stresses changed from tensile under the tool shoulder to compressive beyond this region and it appeared to be the dominant stress component. The transverse stresses were tensile and of lower magnitude. Both the longitudinal and transverse residual stresses have their maximum values within the weld zone near the end of the weld length. For both peak temperatures and residual stresses, higher values were obtained at the AS with no tool offset and 1 mm offset to the AS, and at the RS with 1 mm offset to the RS. Lower residual stresses and better weld quality were obtained with tool offset to the aluminum side.

References

References
1.
Mclean
,
A. A.
,
Powell
,
G. L. F.
,
Brown
,
I. H.
, and
Linton, V. M.
,
2003
, “
Friction Stir Welding of Magnesium Alloy AZ31B to Aluminium Alloy 5083
,”
Sci. Technol. Weld. Joining.
,
8
(
6
), pp.
462
464
.
2.
Sato
,
Y. S.
,
Park
,
S.
,
Michiuchi
,
M.
, and
Kokawa
,
H.
,
2004
, “
Constitutional Liquation During Dissimilar Friction Stir Welding of Al and Mg Alloys
,”
Scr. Mater.
,
50
(
9
), pp.
1233
1236
.
3.
Khodir
,
S. A.
, and
Shibayanagi
,
T.
,
2007
, “
Dissimilar Friction Stir Welded Joints Between 2024-T3 Aluminum Alloy and AZ31 Magnesium Alloy
,”
Mater. Trans.
,
48
(
9
), pp.
2501
2505
.
4.
Kwon
,
Y. J.
,
Shigematsu
,
I.
, and
Saito
,
N.
,
2008
, “
Dissimilar Friction Stir Welding Between Magnesium and Aluminum Alloys
,”
Mater. Lett.
,
62
(
23
), pp.
3827
3829
.
5.
Morishige
,
T.
,
Kawaguchi
,
A.
,
Tsujikawa
,
M.
,
Hino
,
M.
,
Hirata
,
T.
, and
Higashi
,
K.
,
2008
, “
Dissimilar Welding of Al and Mg Alloys by FSW
,”
Mater. Trans.
,
49
(
5
), pp.
1129
1131
.
6.
Liu
,
C.
,
Chen
,
D. L.
,
Bhole
,
S.
,
Cao
,
X.
, and
Jahazi
,
M.
,
2009
, “
Polishing-Assisted Galvanic Corrosion in the Dissimilar Friction Stir Welded Joint of AZ31 Magnesium Alloy to 2024 Aluminum Alloy
,”
Mater. Charact.
,
60
(
5
), pp.
370
376
.
7.
Mofid
,
M. A.
,
Abdollah-zadeh
,
A.
, and
Malek Ghaini
,
F.
,
2012
, “
The Effect of Water Cooling During Dissimilar Friction Stir Welding of Al Alloy to Mg Alloy
,”
Mater. Des.
,
36
, pp.
161
167
.
8.
Masoudian
,
A.
,
Tahaei
,
A.
,
Shakiba
,
A.
,
Sharifianjazi
,
F.
, and
Mohandesi
,
J. A.
,
2014
, “
Microstructure and Mechanical Properties of Friction Stir Weld of Dissimilar AZ31-O Magnesium Alloy to 6061-T6 Aluminum Alloy
,”
Trans. Nonferrous Met. Soc. China
,
24
(
5
), pp.
1317
1322
.
9.
Zhao
,
Y.
,
Lu
,
Z.
,
Yan
,
K.
, and
Huang
,
L.
,
2015
, “
Microstructural Characterizations and Mechanical Properties in Underwater Friction Stir Welding of Aluminum and Magnesium Dissimilar Alloys
,”
Mater. Des.
,
65
, pp.
675
681
.
10.
Jagadeesha
,
C. B.
,
2014
, “
Dissimilar Friction Stir Welding Between Aluminum Alloy and Magnesium Alloy at a Low Rotational Speed
,”
Mater. Sci. Eng.
,
616
, pp.
55
62
.
11.
Yan
,
J.
,
Xu
,
Z.
,
Li
,
Z.
,
Li
,
L.
, and
Yang
,
S.
,
2005
, “
Microstructure Characteristics and Performance of Dissimilar Welds Between Magnesium Alloy and Aluminum Formed by Friction Stirring
,”
Scr. Mater.
,
53
(
5
), pp.
585
589
.
12.
Firouzdor
,
V.
, and
Kou
,
S.
,
2010
, “
Al-to Mg Friction Stir-Welding: Effect of Material Position, Travel Speed and Rotation Speed
,”
Met. Mater. Trans
.,
41
(
11
), pp.
2914
2935
.
13.
Bussu
,
G.
, and
Irving
,
P.
,
2003
, “
The Role of Residual Stress and Heat Affected Zone Properties on Fatigue Crack Propagation in Friction Stir Welded 2024–T351 Aluminium Joints
,”
Int J Fatigue
,
25
(
1
), pp.
77
88
.
14.
Fratini
,
L.
,
Pasta
,
S.
, and
Reynolds
,
A. P.
,
2009
, “
Fatigue Crack Growth in 2024-T351 Friction Stir Welded Joints: Longitudinal Residual Stress and Microstructural Effects
,”
Int J Fatigue
,
31
(
3
), pp.
495
−–
500
.
15.
Moghadam
,
D.
, and
Farhangdoost
,
K.
,
2016
, “
Influence of Welding Parameters on Fracture Toughness and Fatigue Crack Growth Rate in Friction Stir Welded Nugget of 2024-T351 Aluminum Alloy Joints
,”
Trans. Nonferrous Met. Soc. China
,
26
(
10
), pp.
2567
2585
.
16.
Sutton
,
M. A.
,
Reynolds
,
A. P.
,
Wang
,
D. Q.
, and
Hubbard, C. R.
,
2002
, “
A Study of Residual Stresses and Microstructure in 2024-T3 Aluminum Friction Stir Butt Welds
,”
ASME J. Eng. Mater. Technol.
,
124
(
4
), pp.
215
221
.
17.
Peel
,
M.
,
Steuwer
,
A.
,
Preuss
,
M.
, and
Withers, P. J.
,
2003
, “
Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction Stir Welds
,”
Acta Mater.
,
51
(
16
), pp.
4791
4801
.
18.
Steuwer
,
A.
,
Peel
,
M. J.
, and
Withers
,
P. J.
,
2006
, “
Dissimilar Friction Stir Welds in AA5083–AA6082: The Effect of Process Parameters on Residual Stress
,”
Mater. Sci. Eng. A
,
441
(
1–2
), pp.
187
196
.
19.
Prime
,
M. B.
,
Gnäupel-Herold
,
T.
,
Baumann
,
J. A.
,
Lederich
,
R. J.
,
Bowden
,
D. M.
, and
Sebring
,
R. J.
,
2006
, “
Residual Stress Measurements in a Thick, Dissimilar Aluminum Alloy Friction Stir Weld
,”
Acta Mater.
,
54
(
15
), pp.
4013
4021
.
20.
Zapata
,
J.
,
Toro
,
M.
, and
López
,
D.
,
2016
, “
Residual Stresses in Friction Stir Dissimilar Welding of Aluminum Alloys
,”
J. Mater. Proc. Technol.
,
229
, pp.
121
127
.
21.
Fratini
,
L.
,
Macaluso
,
G.
, and
Pasta
,
S.
,
2009
, “
Residual Stresses and FCP Prediction in FSW Through a Continuous FE Model
,”
J. Mater. Proc. Technol.
,
209
(
15–16
), pp.
5465
5474
.
22.
Buffa
,
G.
,
Ducato
,
A.
, and
Fratini
,
L.
,
2011
, “
Numerical Procedure for Residual Stresses Prediction in Friction Stir Welding
,”
Finite Elem. Anal. Des.
,
47
(
4
), pp.
470
476
.
23.
Sadeghi
,
S.
,
Najafabadi
,
M. A.
,
Javadi
,
Y.
, and
Mohammadisefat
,
M.
,
2013
, “
Using Ultrasonic Waves and Finite Element Method to Evaluate Through-Thickness Residual Stresses Distribution in the Friction Stir Welding of Aluminum Plates
,”
Mater. Des.
,
52
, pp.
870
880
.
24.
Aval
,
H. J.
,
Serajzadeh
,
S.
, and
Kokabi
,
A. H.
,
2012
, “
Experimental and Theoretical Evaluations of Thermal Histories and Residual Stresses in Dissimilar Friction Stir Welding of AA5086-AA6061
,”
Int. J. Adv. Manuf. Technol.
,
61
(
1–4
), pp.
149
160
.
25.
Arif
,
A.
, and
Pandey
,
K. N.
,
2013
, “
Thermo-Mechanical Modeling for Residual Stresses of Friction Stir Welding of Dissimilar Alloys
,”
Int. J. Eng. Sci. Technol.
,
5
(6), pp.
1189
1198
.https://www.researchgate.net/publication/260898289_Thermo-mechanical_Modeling_for_Residual_Stresses_of_Friction_Stir_Welding_of_Dissimilar_Alloys
26.
Kouadri
,
S.
,
Necib
,
K.
,
Atlati
,
S.
,
Haddag
,
B.
, and
Nouari
,
M.
,
2013
, “
Quantification of the Chip Segmentation in Metal Machining: Application to Machining the Aeronautical Aluminium Alloy AA2024-T351 With Cemented Carbide Tools WC-Co
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
102
113
.
27.
Samer
,
F.
,
Tarlochan
,
F.
,
Samaka
,
H.
, and
Khalid
,
K. S.
,
2013
, “
Improvement of Energy Absorption of Thin Walled Hexagonal Tube Made of Magnesium Alloy by Using Trigger Mechanisms
,”
Int. J. Res. Eng. Technol.
,
2
(
10
), pp.
173
180
.http://esatjournals.net/ijret/2013v02/i10/IJRET20130210025.pdf
28.
Cubberly
,
W. H.
, Baker, H., and Benjamin, D., eds.,
1979
,
Properties and Selection: Nonferrous Alloys and Pure Metals
(Metals Handbook),
9th ed.
, Vol.
2
,
American Society for Metals
,
Metals Park, OH
.
29.
Yang
,
H.
,
Huang
,
L.
, and
Zhan
,
M.
,
2010
, “
Coupled Thermo-Mechanical FE Simulation of the Hot Splitting Spinning Process of Magnesium Alloy AZ31
,”
Comp. Mater. Sci.
,
47
(
3
), pp.
857
866
.
30.
ASTM International
,
2013
, “
Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM E837-13a
.https://www.astm.org/Standards/E837.htm
31.
Zhu
,
X. K.
, and
Chao
,
Y. J.
,
2004
, “
Numerical Simulation of Transient Temperature and Residual Stresses in Friction Stir Welding of 304 L Stainless Steel
,”
J. Mat. Proc. Technol.
,
146
(
2
), pp.
263
272
.
32.
Fu
,
B.
,
Qin
,
G.
,
Li
,
F.
,
Meng
,
X.
,
Zhang
,
J.
, and
Wu
,
C.
,
2015
, “
Friction Stir Welding Process of Dissimilar Metals of 6061-T6 Aluminum Alloy to AZ31B Magnesium Alloy
,”
J. Mater. Proc. Technol.
,
218
, pp.
38
47
.
33.
Yang
,
Y. K.
,
Dong
,
H.
,
Cao
,
H.
,
Chang
,
Y. A.
, and
Kou
,
S.
,
2008
, “
Liquation of Mg Alloys in Friction Spot Welding
,”
Weld. J.
,
87
, pp.
167s
177s
.https://app.aws.org/wj/supplement/WJ_2008_07_s167.pdf
34.
Somasekharan
,
A. C.
, and
Murr
,
L. E.
,
2004
, “
Microstructure in Friction-Stir Welded Dissimilar Magnesium Alloys and Magnesium Alloys to 6061-T6 Aluminum Alloy
,”
Mater. Charact.
,
52
(
1
), pp.
49
64
.
35.
Riahi
,
M.
, and
Nazari
,
H.
,
2011
, “
Analysis of Transient Temperature and Residual Thermal Stresses in Friction Stir Welding of Aluminum Alloy 6061-T6 Via Numerical Simulation
,”
Int. J. Adv. Manuf. Technol.
,
55
(
1–4
), pp.
143
152
.
36.
Khandkar
,
M.
,
Khan
,
J.
,
Reynolds
,
A.
, and
Sutton
,
M.
,
2006
, “
Predicting Residual Thermal Stresses in Friction Stir Welded Metals
,”
J. Mater. Proc. Technol.
,
174
(
1–3
), pp.
195
203
.
37.
Darvazi
,
A. R.
, and
Iranmanesh
,
M.
,
2014
, “
Prediction of Asymmetric Transient Temperature and Longitudinal Residual Stress in Friction Stir Welding of 304 L Stainless Steel
,”
Mater. Des.
,
55
, pp.
812
820
.
You do not currently have access to this content.