A coordinated experimental and computational analysis was undertaken to investigate the temperature field, heat generation, and stress distribution within a spark plasma sintering (SPS) tooling-specimen system during single- and multipellet fabrication of uranium dioxide (UO2) fuel pellets. Different SPS tool assembly configurations consisting of spacers, punches, pellets, and a die with single or multiple cavities were analyzed using ANSYS finite element (FE) software with coupled electro-thermo-mechanical modeling approach. For single-pellet manufacture, the importance of the die dimensions in relation to punch length and their influence on temperature distribution in the pellet were analyzed. The analysis was then extended to propose methods for reducing the overall power consumption of the SPS fabrication process by optimizing the dimensions and configurations of tooling for simultaneous sintering of multiple pellets in each processing cycle. For double-pellet manufacture, the effect of the center punch length (that separates the two pellets) on the temperature distribution in the pellets was investigated. Finally, for the multiple pellet fabrication, the optimum spacing between the pellets as well as the distance between the die cavities and the outer surface of the die wall were determined. A good agreement between the experimental data on the die surface temperature and FE model results was obtained. The current analysis may be utilized for further optimization of advanced tooling concepts to control temperature distribution and obtain uniform microstructure in fuel pellets in large-scale manufacturing using SPS process.

References

References
1.
Allen
,
J. B.
, and
Walter
,
C.
,
2012
, “
Numerical Simulation of the Temperature and Stress Field Evolution Applied to the Field Assisted Sintering Technique
,”
ISRN Mater. Sci.
,
2012
, p.
698158
.
2.
Vanmeensel
,
K.
,
Laptev
,
A.
,
Hennicke
,
J.
,
Vleugels
,
J.
, and
Van der Biest
,
O.
,
2005
, “
Modelling of the Temperature Distribution During Field Assisted Sintering
,”
Acta Mater.
,
53
(
16
), pp.
4379
4388
.
3.
Lagos
,
M.
, and
Agote
,
I.
,
2013
, “
SPS Synthesis and Consolidation of TiAl Alloys From Elemental Powders: Microstructure Evolution
,”
Intermetallics
,
36
, pp.
51
56
.
4.
Gu
,
Y.
,
Khor
,
K.
, and
Cheang
,
P.
,
2004
, “
Bone-Like Apatite Layer Formation on Hydroxyapatite Prepared by Spark Plasma Sintering (SPS)
,”
Biomaterials
,
25
(
18
), pp.
4127
4134
.
5.
Hayun
,
S.
,
Paris
,
V.
,
Mitrani
,
R.
,
Kalabukhov
,
S.
,
Dariel
,
M.
,
Zaretsky
,
E.
, and
Frage
,
N.
,
2012
, “
Microstructure and Mechanical Properties of Silicon Carbide Processed by Spark Plasma Sintering (SPS)
,”
Ceram. Int.
,
38
(
8
), pp.
6335
6340
.
6.
Ge
,
L.
,
Subhash
,
G.
,
Baney
,
R. H.
, and
Tulenko
,
J. S.
,
2014
, “
Influence of Processing Parameters on Thermal Conductivity of Uranium Dioxide Pellets Prepared by Spark Plasma Sintering
,”
J. Eur. Ceram. Soc.
,
34
(
7
), pp.
1791
1801
.
7.
Ge
,
L.
,
Subhash
,
G.
,
Baney
,
R. H.
,
Tulenko
,
J. S.
, and
McKenna
,
E.
,
2013
, “
Densification of Uranium Dioxide Fuel Pellets Prepared by Spark Plasma Sintering (SPS)
,”
J. Nucl. Mater.
,
435
(
1
), pp.
1
9
.
8.
Chen
,
Z.
,
Subhash
,
G.
, and
Tulenko
,
J. S.
,
2014
, “
Master Sintering Curves for UO2 and UO2–SiC Composite Processed by Spark Plasma Sintering
,”
J. Nucl. Mater.
,
454
(
1
), pp.
427
433
.
9.
Chen
,
Z.
,
Subhash
,
G.
, and
Tulenko
,
J. S.
,
2015
, “
Spark Plasma Sintering of Diamond-Reinforced Uranium Dioxide Composite Fuel Pellets
,”
Nucl. Eng. Des.
,
294
, pp.
52
59
.
10.
Chen
,
Z.
,
Subhash
,
G.
, and
Tulenko
,
J. S.
,
2016
, “
Raman Spectroscopic Investigation of Graphitization of Diamond During Spark Plasma Sintering of UO2-Diamond Composite Nuclear Fuel
,”
J. Nucl. Mater.
,
475
, pp.
1
5
.
11.
O'Brien
,
R.
, and
Jerred
,
N.
,
2013
, “
Spark Plasma Sintering of W–UO2 Cermets
,”
J. Nucl. Mater.
,
433
(
1
), pp.
50
54
.
12.
Wangle
,
T.
,
Tyrpekl
,
V.
,
Cologna
,
M.
, and
Somers
,
J.
,
2015
, “
Simulated UO2 Fuel Containing CsI by Spark Plasma Sintering
,”
J. Nucl. Mater.
,
466
, pp.
150
153
.
13.
Nenoff
,
T. M.
,
Jacobs
,
B. W.
,
Robinson
,
D. B.
,
Provencio
,
P. P.
,
Huang
,
J.
,
Ferreira
,
S.
, and
Hanson
,
D. J.
,
2011
, “
Synthesis and Low Temperature In Situ Sintering of Uranium Oxide Nanoparticles
,”
Chem. Mater.
,
23
(
23
), pp.
5185
5190
.
14.
Tyrpekl
,
V.
,
Cologna
,
M.
,
Vigier
,
J. F.
,
Cambriani
,
A.
,
De Weerd
,
W.
, and
Somers
,
J.
,
2017
, “
Preparation of Bulk‐Nanostructured UO2 Pellets Using High‐Pressure Spark Plasma Sintering for LWR Fuel Safety Assessment
,”
J. Am. Ceram. Soc.
,
100
(
4
), pp.
1269
1274
.
15.
Ironman
,
T.
,
Tulenko
,
J.
, and
Subhash
,
G.
,
2017
, “
Exploration of Viability of Spark Plasma Sintering for Commercial Fabrication of Nuclear Fuel Pellets
,”
Nucl. Technol.
,
200
(
2
), pp.
144
158
.
16.
Cologna
,
M.
,
Tyrpekl
,
V.
,
Ernstberger
,
M.
,
Stohr
,
S.
, and
Somers
,
J.
,
2016
, “
Sub-Micrometre Grained UO2 Pellets Consolidated From Sol Gel Beads Using Spark Plasma Sintering (SPS)
,”
Ceram. Int.
,
42
(
6
), pp.
6619
6623
.
17.
Yeo
,
S.
,
Mckenna
,
E.
,
Baney
,
R.
,
Subhash
,
G.
, and
Tulenko
,
J.
,
2013
, “
Enhanced Thermal Conductivity of Uranium Dioxide–Silicon Carbide Composite Fuel Pellets Prepared by Spark Plasma Sintering (SPS)
,”
J. Nucl. Mater.
,
433
(
1
), pp.
66
73
.
18.
Guillon
,
O.
,
Gonzalez-Julian
,
J.
,
Dargatz
,
B.
,
Kessel
,
T.
,
Schierning
,
G.
,
Räthel
,
J.
, and
Herrmann
,
M.
,
2014
, “
Field‐Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments
,”
Adv. Eng. Mater.
,
16
(
7
), pp.
830
849
.
19.
Yucheng
,
W.
, and
Zhengyi
,
F.
,
2002
, “
Study of Temperature Field in Spark Plasma Sintering
,”
Mater. Sci. Eng. B
,
90
(
1
), pp.
34
37
.
20.
Wang
,
Y. C.
,
Fu
,
Z. Y.
, and
Wang
,
W. M.
,
2003
, “
Numerical Simulation of the Temperature Field in Sintering of BN by SPS
,”
Key Eng. Mater.
,
249
, pp.
471
476
.
21.
Anselmi-Tamburini
,
U.
,
Gennari
,
S.
,
Garay
,
J.
, and
Munir
,
Z. A.
,
2005
, “
Fundamental Investigations on the Spark Plasma Sintering/Synthesis Process—II: Modeling of Current and Temperature Distributions
,”
Mater. Sci. Eng. A
,
394
(
1
), pp.
139
148
.
22.
Giuntini
,
D.
,
Olevsky
,
E. A.
,
Garcia-Cardona
,
C.
,
Maximenko
,
A. L.
,
Yurlova
,
M. S.
,
Haines
,
C. D.
,
Martin
,
D. G.
, and
Kapoor
,
D.
,
2013
, “
Localized Overheating Phenomena and Optimization of Spark-Plasma Sintering Tooling Design
,”
Materials
,
6
(
7
), pp.
2612
2632
.
23.
Muñoz
,
S.
, and
Anselmi-Tamburini
,
U.
,
2013
, “
Parametric Investigation of Temperature Distribution in Field Activated Sintering Apparatus
,”
Int. J. Adv. Manuf. Technol.
,
65
(
1–4
), pp.
127
140
.
24.
Wang
,
C.
,
Cheng
,
L.
, and
Zhao
,
Z.
,
2010
, “
FEM Analysis of the Temperature and Stress Distribution in Spark Plasma Sintering: Modelling and Experimental Validation
,”
Comput. Mater. Sci.
,
49
(
2
), pp.
351
362
.
25.
Giuntini
,
D.
,
Raethel
,
J.
,
Herrmann
,
M.
,
Michaelis
,
A.
, and
Olevsky
,
E. A.
,
2015
, “
Advancement of Tooling for Spark Plasma Sintering
,”
J. Am. Ceram. Soc.
,
98
(
11
), pp.
3529
3537
.
26.
Bobkov
,
V.
,
Fokin
,
L.
,
Petrov
,
E.
,
Popov
,
V.
,
Rumiantsev
,
V.
, and
Savvatimsky
,
A.
,
2008
, “
Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data
,” International Atomic Energy Agency, Vienna, Austria.
27.
Sengupta
,
A.
,
Bhagat
,
R.
,
Jarvis
,
T.
,
Banerjee
,
J.
,
Kutty
,
T.
,
Ravi
,
K.
,
D'Souza
,
O.
,
Keswani
,
R.
,
Nair
,
M.
, and
Ramachandran
,
R.
,
1999
, “
Some Important Properties of Simulated UO2 Fuel
,” Bhabha Atomic Research Centre, Mumbai, India, Technical Report No.
BARC/1999/E/008
.http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/31/003/31003194.pdf
28.
Pavia
,
A.
,
Durand
,
L.
,
Ajustron
,
F.
,
Bley
,
V.
,
Chevallier
,
G.
,
Peigney
,
A.
, and
Estournes
,
C.
,
2013
, “
Electro-Thermal Measurements and Finite Element Method Simulations of a Spark Plasma Sintering Device
,”
J. Mater. Process. Technol.
,
213
(
8
), pp.
1327
1336
.
29.
California Nanotechnologies,
2016
, “
SPS/FAST Consumables: Graphite Tooling
,” California Nanotechnologies, Inc., Cerritos, CA.
30.
Wolff
,
C.
,
Mercier
,
S.
,
Couque
,
H.
,
Molinari
,
A.
,
Bernard
,
F.
, and
Naimi
,
F.
,
2016
, “
Thermal-Electrical-Mechanical Simulation of the Nickel Densification by Spark Plasma Sintering. Comparison With Experiments
,”
Mech. Mater.
,
100
, pp.
126
147
.
31.
Antonova
,
E. E.
, and
Looman
,
D. C.
,
2005
, “
Finite Elements for Thermoelectric Device Analysis in ANSYS
,”
24th International Conference on Thermoelectrics
(
ICT
), Clemson, SC, June 19–23, pp.
215
218
.
32.
Yang
,
H.
,
2010
, “
Multi-Field Simulation of the Spark Plasma Sintering Process
,”
Master's thesis
, The Pennsylvania State University, State College, PA.https://etda.libraries.psu.edu/catalog/10790
33.
Munoz
,
S.
, and
Anselmi-Tamburini
,
U.
,
2010
, “
Temperature and Stress Fields Evolution During Spark Plasma Sintering Processes
,”
J. Mater. Sci.
,
45
(
23
), pp.
6528
6539
.
34.
Molénat
,
G.
,
Durand
,
L.
,
Galy
,
J.
, and
Couret
,
A.
,
2010
, “
Temperature Control in Spark Plasma Sintering: An FEM Approach
,”
J. Metall.
,
2010
, p.
145431
.
35.
Malmstrom
,
C.
,
Keen
,
R.
, and
Green
,
L.
, Jr.
,
1951
, “
Some Mechanical Properties of Graphite at Elevated Temperatures
,”
J. Appl. Phys.
,
22
(
5
), pp.
593
600
.
You do not currently have access to this content.