In this study, weldability of ultrasonic welding of 4-mm-thick fiber carbon/nylon 66 composite in lap configuration was investigated. Ultrasonic welding tests were performed, and the weld appearance, microstructure, and fractography of the welded joints were examined using optical and scanning electron microscope. The transient temperatures near the faying surfaces and horn-workpiece interfaces were recorded to understand the weld growth mechanism. It was found that it is feasible to join 4-mm-thick lapped carbon fiber reinforced nylon 66 composite with ultrasonic welding. Under the ultrasonic vibration, the weld initiated and grew at the faying surfaces, while the weld indentation developed at the horn-workpiece interface. The pores observed in the regions between the heat-affected-zone (HAZ) and the fusion zone (FZ), and the severe weld indentation on the surface of upper workpieces decreased the loading capacity of the ultrasonic welded (UW) joints and caused the welded carbon/nylon 66 composite fractured prematurely. The strengths of the ultrasonic welds were determined by the balance of positive effect of the weld area and negative effects of the weld indentation and porosity near the FZ. To ensure the joint strength, it is necessary to apply the proper weld schedules (i.e., welding time and horn pressure) in ultrasonic welding of 4-mm-thick carbon fiber reinforced nylon 66 composite, which were developed based on the joint strength criterion.

References

References
1.
Mapleston
,
P.
,
2002
, “
Nylons Drive to Expand Role in Automotive Applications
,”
Mod. Plast. Int.
,
79
(
4
), pp.
41
42
.
2.
Granowicz
,
P.
,
Molteni
,
G. L.
, and
Kobayashi
,
T.
,
2011
, “
New Polymer “SHIELD” Technology Protects High-Performance Nylon and PPA Polymers to Replace More Metal–for Weight and Cost Savings–Under the Hood
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
430
439
.
3.
Senthilvelan
,
S.
, and
Gnanamoorthy
,
R.
,
2006
, “
Selective Carbon Fiber Reinforced Nylon 66 Spur Gears: Development and Performance
,”
J. Appl. Compos. Mater.
,
13
(
1
), pp.
43
56
.
4.
Grande
,
J. A.
,
2005
, “
New High-Performance Nylons for Automotive, Electronics, Packaging
,”
Plast. Technol.
,
51
(
5
), pp.
53
54
.https://www.ptonline.com/articles/new-high-performance-nylons-for-automotive-electronics-packaging
5.
Ageorges
,
C.
,
Yea
,
L.
, and
Hou
,
M.
,
2001
, “
Advances in Fusion Bonding Techniques for Joining Thermoplastic Matrix Composites: A Review
,”
Composites, Part A
,
32
(
6
), pp.
839
857
.
6.
Schell
,
J. S. U.
,
Guilleminot
,
J.
,
Binetruy
,
C.
, and
Krawczak
,
P.
,
2009
, “
Computational and Experimental Analysis of Fusion Bonding in Thermoplastic Composites: Influence of Process Parameters
,”
J. Mater. Process. Technol.
,
209
(
11
), pp.
5211
5219
.
7.
Hou
,
M.
,
Yang
,
M.
,
Beehag
,
A.
,
Mai
,
Y.-W.
, and
Ye
,
L.
,
1999
, “
Resistance Welding of Carbon Fiber Reinforced Thermoplastic Composite Using Alternative Heating Element
,”
Compos. Struct.
,
47
(
1
), pp.
667
672
.
8.
Ahmed
,
T. J.
,
Stavrov
,
D.
,
Bersee
,
H. E. N.
, and
Beukers
,
A.
,
2006
, “
Induction Welding of Thermoplastic Composites—An Overview
,”
Composites, Part A
,
37
(
10
), pp.
1638
1651
.
9.
Kagan
,
V.
,
Lui
,
S. C.
,
Smith
,
G. R.
, and
Partry
,
J.
,
1996
, “
The Optimized Performance of Linear Vibration Welded Nylon 6 and Nylon 66 Butt Joints
,”
Plastics–Racing Into the Future (ANTEC' 96)
, Indianapolis, IN, May 5–10, pp.
1266
1274
.
10.
Froment
,
I. D.
,
1995
, “
Vibration Welding Nylon 6 and Nylon 66—A Comparative Study
,”
Plastics Engineering (ANTEC' 95)
, Boston, MA, May 7–11, pp.
1285
1289
.
11.
Bates
,
P. J.
,
MacDonald
,
J. J.
,
Wang
,
C. Y.
,
Mah
,
J.
, and
Liang
,
H.
,
2003
, “
Vibration Welding Nylon 66—Part I: Experimental Study
,”
J. Thermoplast. Compos. Mater.
,
16
(
2
), pp.
101
119
.
12.
Tsang
,
K. Y.
,
DuQuesnay
,
D. L.
, and
Bates
,
P. J.
,
2008
, “
Fatigue Properties of Vibration—Welded Nylon 6 and Nylon 66 Reinforced With Glass Fibers
,”
Composites, Part B
,
39
(
2
), pp.
396
404
.
13.
Lockwood
,
K. T.
,
Zhang
,
Y.
,
Bates
,
P. J.
, and
DuQuesnay
,
D. L.
,
2014
, “
Effect of Temperature on Fatigue Strength of Vibration Welded and Unwelded Glass Reinforced Nylon 6
,”
Int. J. Fatigue
,
66
, pp.
111
117
.
14.
Weglowska
,
A.
, and
Pietras
,
A.
,
2012
, “
Influence of the Welding Parameters on the Structure and Mechanical Properties of Vibration Welded Joints of Dissimilar Grades of Nylons
,”
Arch. Civ. Mech. Eng.
,
12
(
2
), pp.
198
204
.
15.
Kamal
,
M. R.
,
Chung
,
Y.-M.
, and
Gomez
,
R.
,
2008
, “
Three-Dimensional Fiber Orientation in Vibration Welded Joints of Glass Fiber Reinforced Polyamide-6
,”
Polym. Compos.
,
29
(
9
), pp.
954
963
.
16.
Stokes
,
V. K.
,
1988
, “
Vibration Welding of Thermoplastics—Part I: Phenomenology of the Welding Process
,”
Polym. Eng. Sci.
,
28
(
11
), pp.
718
727
.
17.
Stokes
,
V. K.
,
1988
, “
Vibration Welding of Thermoplastics—Part II: Analysis of the Welding Process
,”
Polym. Eng. Sci.
,
28
(
11
), pp.
728
739
.
18.
Schlarb
,
A. K.
, and
Ehrenstein
,
G. W.
,
1989
, “
The Impact Strength of Butt Welded Vibration Welds Related to Microstructure and Welding History
,”
Polym. Eng. Sci.
,
29
(
23
), pp.
1677
1682
.
19.
Villegas
,
I. F.
, and
Bersee
,
H. E. N.
,
2010
, “
Ultrasonic Welding of Advanced Thermoplastic Composites: An Investigation on Energy-Directing Surfaces
,”
Adv. Polym. Technol.
,
29
(
2
), pp.
112
121
.
20.
Villegas
,
I. F.
,
2014
, “
Strength Development Versus Process Data in Ultrasonic Welding of Thermoplastic Composites With Flat Energy Directors and Its Application to the Definition of Optimum Processing Parameters
,”
Composites, Part A
,
65
, pp.
27
37
.
21.
Liu
,
H.-K.
,
Dai
,
W.-L.
, and
Lee
,
Y.-C.
,
2000
, “
Moisture Effects and Acoustic Emission Characterization on Lap Shear Strength in Ultrasonic Welded Carbon/Nylon Composites
,”
J. Mater. Sci.
,
35
(
13
), pp.
3389
3396
.
22.
Zhi
,
Q.
,
Tan
,
X.-R.
,
Lu
,
L.
,
Chen
,
L.-Y.
,
Li
,
J.-C.
, and
Liu
,
Z.-X.
,
2017
, “
Decomposition of Ultrasonically Welded Carbon Fiber/Polyamide 66 and Its Effect on Weld Quality
,”
Weld. World
,
61
(
5
), pp. 1017–1028.
23.
ASTM
, “
Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal)
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM D1002-01
.https://www.astm.org/DATABASE.CART/HISTORICAL/D1002-01.htm
24.
White
,
G. V.
, II
,
Clough
,
R. L.
,
Hochrein
,
J. M.
, and
Bernstein
,
R.
,
2013
, “
Application of Isotopic Labeling, and Gas Chromatography Mass Spectrometry, to Understanding Degradation Products and Pathways in the Thermal-Oxidative Aging of Nylon 6.6
,”
Polym. Degrad. Stab.
,
98
(
12
), pp.
2452
2465
.
25.
Holland
,
B. J.
, and
Hay
,
J. N.
,
2000
, “
Thermal Degradation of Nylon Polymers
,”
Polym. Int.
,
49
(
9
), pp.
943
948
.
26.
Sheth
,
P. J.
, and
Johnson
,
J. F.
,
1979
,
Polymer Stress Reactions
,
A.
Casale
and
R. S.
Porter
, eds.,
Academic Press
,
New York
.
27.
White
,
I. I. G. V.
,
Smith
,
J. N.
,
Clough
,
R. L.
,
Ohlhausen
,
J. A.
,
Hochrein
,
J. M.
, and
Bernstein
,
R.
,
2012
, “
The Origins of CO2 and NH3 in the Thermal-Oxidative Degradation of Nylon 6.6
,”
Polym. Degrad. Stab.
,
97
(
8
), pp.
1396
1404
.
28.
Lu
,
M.
,
Ye
,
L.
, and
Mai
,
Y.-W.
,
2004
, “
Thermal De-Consolidation of Thermoplastic Matrix Composites—II: ‘Migration’ of Voids and ‘Re-Consolidation
’,”
Compos. Sci. Technol.
,
64
(
2
), pp.
191
202
.
29.
Patham
,
B.
, and
Foss
,
P. H.
,
2011
, “
Thermoplastic Vibration Welding Review of Process Phenomenology and Processing–Structure–Property Interrelationships
,”
Polym. Eng. Sci.
,
51
(
1
), pp.
1
22
.
30.
Stokes
,
V. K.
,
2003
, “
Comparison of Vibration and Hot-Tool Thermoplastic Weld Morphologies
,”
Polym. Eng. Sci.
,
43
(
9
), pp.
1576
1602
.
31.
Liu
,
S.-J.
,
Lin
,
W.-F.
,
Chang
,
B.-C.
,
Wu
,
G.-M.
, and
Hung
,
S.-W.
,
1999
, “
Optimizing the Joint Strength of Ultrasonically Welded Thermoplastics
,”
Adv. Polym. Technol.
,
18
(
2
), pp.
125
135
.
32.
Jandali
,
G.
, and
Mallick
,
P. K.
,
2005
, “
Vibration Welding of a Unidirectional Continuous Glass Fiber Reinforced Polypropylene GMT
,”
Composites, Part A
,
36
(
12
), pp.
1687
1693
.
33.
Stokes
,
V. K.
,
1988
, “
Vibration Welding of Thermoplastics—Part III: Strength of Polycarbonate Butt Welds
,”
Polym. Eng. Sci.
,
28
(
15
), pp.
989
997
.
34.
Bates
,
P. J.
,
Dyck
,
C.
, and
Osti
,
M.
,
2004
, “
Vibration Welding Nylon 6 to Nylon 66
,”
Polym. Eng. Sci.
,
44
(
4
), pp.
760
771
.
35.
Tsujino
,
J.
,
Uchida
,
T.
,
Yamano
,
K.
,
Iwamoto
,
N.
, and
Ueoka
,
T.
,
1998
, “
Welding Characteristics of Ultrasonic Plastic Welding Using Two-Vibration System of 90 kHz and 27 or 20 kHz and Complex Vibration Systems
,”
Ultrasonics
,
36
(
1–5
), pp.
67
74
.
36.
Matsuoka
,
S -I.
,
1995
, “
Ultrasonic Welding and Characteristics of Glass-Fiber Reinforced Plastic: Comparison Between the Paper-Making Method and, the Impregnation Method
,”
J. Mater. Process. Technol.
,
55
(
3–4
), pp.
427
431
.
37.
Qiu
,
J.
,
Zhang
,
G.
, and
Wu
,
Y.
,
2009
, “
Proposal of Ultrasonic Welding Technique and Weld Performances Applied to Polymers
,”
Polym. Eng. Sci.
,
49
(
9
), pp.
1755
1759
.
You do not currently have access to this content.