In order to further improve the processing performance of rotary ultrasonic machining (RUM), a novel longitudinal–torsional-coupled (LTC) vibration was applied to the RUM. An experimental study on quartz glass was performed to access the feasibility of the LTC-RUM of a brittle material. The LTC-RUM was executed through the addition of helical flutes on the tool of conventional longitudinal RUM (Con-RUM). The experimental results demonstrated that the LTC-RUM could reduce the cutting force by 55% and the edge chipping size at the hole exit by 45% on an average, compared to the Con-RUM. Moreover, the LTC-RUM could also improve the quality of the hole wall through the reduction of surface roughness, in particular, when the spindle speed was relatively low. The mechanism of superior processing performance of LTC-RUM involved the corresponding specific moving trajectory of diamond abrasives, along with higher lengths of lateral cracks produced during the abrasives indentation on the workpiece material. The higher edge chipping size at the hole entrance of LTC-RUM indicated a higher length of lateral cracks in LTC-RUM, due to the increase in the maximum cutting speed. Furthermore, the effect of spindle speed on the cutting force and surface roughness variations verified the important role of the moving trajectory of the diamond abrasive in the superior processing performance mechanism of LTC-RUM.

References

References
1.
Arif
,
M.
,
Xinquan
,
Z.
,
Rahman
,
M.
, and
Kumar
,
S.
,
2013
, “
A Predictive Model of the Critical Undeformed Chip Thickness for Ductile—Brittle Transition in Nano-Machining of Brittle Materials
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
114
122
.
2.
Chen
,
J.
,
Fang
,
Q.
, and
Li
,
P.
,
2015
, “
Effect of Grinding Wheel Spindle Vibration on Surface Roughness and Subsurface Damage in Brittle Material Grinding
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
12
23
.
3.
Malkin
,
S.
, and
Hwang
,
T. W.
,
1996
, “
Grinding Mechanisms for Ceramics
,”
CIRP Ann. Manuf. Technol.
,
45
(
2
), pp.
569
580
.
4.
Nicholls
,
C. J.
,
Boswell
,
B.
,
Davies
,
I. J.
, and
Islam
,
M. N.
,
2017
, “
Review of Machining Metal Matrix Composites
,”
Int. J. Adv. Manuf. Technol.
,
90
(
9–12
), pp. 2429–2441.
5.
Pei
,
Z. J.
,
Fisher
,
G. R.
, and
Liu
,
J.
,
2008
, “
Grinding of Silicon Wafers: A Review From Historical Perspectives
,”
Int. J. Mach. Tools Manuf.
,
48
(
12–13
), pp.
1297
1307
.
6.
Zhang
,
L.
,
Ren
,
C.
,
Ji
,
C.
,
Wang
,
Z.
, and
Chen
,
G.
,
2016
, “
Effect of Fiber Orientations on Surface Grinding Process of Unidirectional C/SiC Composites
,”
Appl. Surf. Sci.
,
366
, pp.
424
431
.
7.
Li
,
H.
,
Lin
,
B.
,
Wan
,
S.
,
Wang
,
Y.
, and
Zhang
,
X.
,
2016
, “
An Experimental Investigation on Ultrasonic Vibration Assisted Grinding of SiO2f/SiO2 Composites
,”
Mater. Manuf. Processes
,
31
(
7
), pp. 887–895.
8.
Li
,
W.
,
Zhang
,
R.
,
Liu
,
Y.
,
Wang
,
C.
,
Wang
,
J.
,
Yang
,
X.
, and
Cheng
,
L.
,
2016
, “
Effect of Different Parameters on Machining of SiC/SiC Composites Via Pico-Second Laser
,”
Appl. Surf. Sci.
,
364
, pp.
378
387
.
9.
Samant
,
A. N.
, and
Dahotre
,
N. B.
,
2009
, “
Laser Machining of Structural Ceramics—A Review
,”
J. Eur. Ceram. Soc.
,
29
(
6
), pp.
969
993
.
10.
Wei
,
C.
,
Zhao
,
L.
,
Hu
,
D.
, and
Ni
,
J.
,
2013
, “
Electrical Discharge Machining of Ceramic Matrix Composites With Ceramic Fiber Reinforcements
,”
Int. J. Adv. Manuf. Technol.
,
64
(
1–4
), pp.
187
194
.
11.
Kohorst
,
P.
,
Tegtmeyer
,
S.
,
Biskup
,
C.
, and
Bach
,
F. W.
,
2014
, “
Machining Human Dentin by Abrasive Water Jet Drilling
,”
Biomed. Mater. Eng.
,
24
(
2
), pp.
1485
1495
.
12.
Das
,
S.
,
Kumar
,
S.
,
Doloi
,
B.
, and
Bhattacharyya
,
B.
,
2016
, “
Experimental Studies of Ultrasonic Machining on Hydroxyapatite Bio-Ceramics
,”
Int. J. Adv. Manuf. Technol.
,
86
(
1–4
), pp.
829
839
.
13.
Thoe
,
T. B.
,
Aspinwall
,
D. K.
, and
Wise
,
M. L. H.
,
1998
, “
Review on Ultrasonic Machining
,”
Int. J. Mach. Tools Manuf.
,
38
(
4
), pp.
239
255
.
14.
Ahluwalia
,
D.
,
Borrelli
,
M. J.
,
Smithson
,
K.
,
Rajurkar
,
K. P.
, and
Malshe
,
A. P.
,
2014
, “
Ultrasonic Machining of Biomass Using Biodegradable Slurry
,”
CIRP Ann.-Manuf. Technol.
,
63
(
1
), pp.
217
220
.
15.
Singh
,
R. P.
, and
Singhal
,
S.
,
2016
, “
Rotary Ultrasonic Machining: A Review
,”
Mater. Manuf. Processes
,
31
(
14
), pp.
1795
1824
.
16.
Wang
,
J.
,
Feng
,
P.
,
Zhang
,
J.
,
Cai
,
W.
, and
Shen
,
H.
,
2017
, “
Investigations on the Critical Feed Rate Guaranteeing the Effectiveness of Rotary Ultrasonic Machining
,”
Ultrasonics
,
74
, pp.
81
88
.
17.
Ning
,
F. D.
,
Cong
,
W. L.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
,
2016
, “
Rotary Ultrasonic Machining of CFRP: A Comparison With Grinding
,”
Ultrasonics
,
66
, pp.
125
132
.
18.
Feng
,
P.
,
Wang
,
J.
,
Zhang
,
J.
, and
Zheng
,
J.
,
2017
, “
Drilling Induced Tearing Defects in Rotary Ultrasonic Machining of C/SiC Composites
,”
Ceram. Int.
,
43
(
1
, Pt. A), pp.
791
799
.
19.
Feng
,
P.
,
Liang
,
G.
, and
Zhang
,
J.
,
2014
, “
Ultrasonic Vibration-Assisted Scratch Characteristics of Silicon Carbide-Reinforced Aluminum Matrix Composites
,”
Ceram. Int.
,
40
(
7
), pp. 10817–10823.
20.
Cao
,
J.
,
Wu
,
Y.
,
Lu
,
D.
,
Fujimoto
,
M.
, and
Nomura
,
M.
,
2014
, “
Material Removal Behavior in Ultrasonic-Assisted Scratching of SiC Ceramics With a Single Diamond Tool
,”
Int. J. Mach. Tools Manuf.
,
79
, pp.
49
61
.
21.
Zhang
,
C.
,
Feng
,
P.
, and
Zhang
,
J.
,
2013
, “
Ultrasonic Vibration-Assisted Scratch-Induced Characteristics of C-Plane Sapphire With a Spherical Indenter
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
38
48
.
22.
Singh
,
R. P.
, and
Singhal
,
S.
,
2016
, “
Investigation of Machining Characteristics in Rotary Ultrasonic Machining of Alumina Ceramic
,”
Mater. Manuf. Processes
,
32
(
3
), pp. 309–326.
23.
Gupta
,
V.
, and
Pandey
,
P. M.
,
2016
, “
An In-Vitro Study of Cutting Force and Torque During Rotary Ultrasonic Bone Drilling
,”
Proc. Inst. Mech. Eng., Part B
, epub.
24.
Jain
,
A. K.
, and
Pandey
,
P. M.
,
2016
, “
Study of Peck Drilling of Borosilicate Glass With μRUM Process for MEMS
,”
J. Manuf. Processes
,
22
, pp.
134
150
.
25.
Zhang
,
C. L.
,
Feng
,
P. F.
,
Pei
,
Z. J.
, and
Cong
,
W. L.
,
2013
, “
Rotary Ultrasonic Machining of Sapphire: Feasibility Study and Designed Experiments
,”
Key Eng. Mater.
,
589–590
, pp.
523
528
.
26.
Gupta
,
V.
, and
Pandey
,
P. M.
,
2016
, “
Experimental Investigation and Statistical Modeling of Temperature Rise in Rotary Ultrasonic Bone Drilling
,”
Med. Eng. Phys.
,
38
(
11
), pp.
1330
1338
.
27.
Cong
,
W. L.
,
Pei
,
Z. J.
,
Sun
,
X.
, and
Zhang
,
C. L.
,
2014
, “
Rotary Ultrasonic Machining of CFRP: A Mechanistic Predictive Model for Cutting Force
,”
Ultrasonics
,
54
(
2
), pp.
663
675
.
28.
Xiao
,
X.
,
Zheng
,
K.
, and
Liao
,
W.
,
2014
, “
Theoretical Model for Cutting Force in Rotary Ultrasonic Milling of Dental Zirconia Ceramics
,”
Int. J. Adv. Manuf. Technol.
,
75
(
9–12
), pp.
1263
1277
.
29.
Liu
,
D.
,
Cong
,
W. L.
,
Pei
,
Z. J.
, and
Tang
,
Y.
,
2012
, “
A Cutting Force Model for Rotary Ultrasonic Machining of Brittle Materials
,”
Int. J. Mach. Tools Manuf.
,
52
(
1
), pp.
77
84
.
30.
Wang
,
J.
,
Feng
,
P.
,
Zhang
,
J.
,
Zhang
,
C.
, and
Pei
,
Z.
,
2016
, “
Modeling the Dependency of Edge Chipping Size on the Material Properties and Cutting Force for Rotary Ultrasonic Drilling of Brittle Materials
,”
Int. J. Mach. Tools Manuf.
,
101
, pp.
18
27
.
31.
Anil Kumar
,
P. M. P.
, and
Jain
,
A.
,
2017
, “Modelling of Un-Deformed Chip Thickness in RUM Process and Study of Size Effects in μ-RUM,”
Ultrasonics
,
77
,
1–16
.https://www.ncbi.nlm.nih.gov/pubmed/28167315
32.
Yuan
,
S.
,
Zhang
,
C.
,
Amin
,
M.
,
Fan
,
H.
, and
Liu
,
M.
,
2015
, “
Development of a Cutting Force Prediction Model Based on Brittle Fracture for Carbon Fiber Reinforced Polymers for Rotary Ultrasonic Drilling
,”
Int. J. Adv. Manuf. Technol.
,
81
(
5–8
), pp.
1223
1231
.
33.
Pei
,
Z. J.
, and
Ferreira
,
P. M.
,
1998
, “
Modeling of Ductile-Mode Material Removal in Rotary Ultrasonic Machining
,”
Int. J. Mach. Tools Manuf.
,
38
(
10–11
), pp.
1399
1418
.
34.
Pei
,
Z. J.
,
Prabhakar
,
D.
,
Ferreira
,
P. M.
, and
Haselkorn
,
M.
,
1995
, “
A Mechanistic Approach to the Prediction of Material Removal Rates in Rotary Ultrasonic Machining
,”
ASME J. Eng. Ind.
,
117
(
2
), pp. 142–151.
35.
Wang
,
J.
,
Zha
,
H.
,
Feng
,
P.
, and
Zhang
,
J.
,
2016
, “
On the Mechanism of Edge Chipping Reduction in Rotary Ultrasonic Drilling: A Novel Experimental Method
,”
Precis. Eng.
,
44
, pp.
231
235
.
36.
Lv
,
D.
,
Huang
,
Y.
,
Tang
,
Y.
, and
Wang
,
H.
,
2013
, “
Relationship Between Subsurface Damage and Surface Roughness of Glass BK7 in Rotary Ultrasonic Machining and Conventional Grinding Processes
,”
Int. J. Adv. Manuf. Technol.
,
67
(
1–4
), pp.
613
622
.
37.
Liu
,
J. W.
,
Baek
,
D. K.
, and
Ko
,
T. J.
,
2014
, “
Chipping Minimization in Drilling Ceramic Materials With Rotary Ultrasonic Machining
,”
Int. J. Adv. Manuf. Technol.
,
72
(
9–12
), pp.
1527
1535
.
38.
Li
,
Z. C.
,
Cai
,
L.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
,
2006
, “
Edge-Chipping Reduction in Rotary Ultrasonic Machining of Ceramics: Finite Element Analysis and Experimental Verification
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1469
1477
.
39.
Wang
,
J.
,
Feng
,
P.
, and
Zhang
,
J.
,
2016
, “
Reduction of Edge Chipping in Rotary Ultrasonic Machining by Using Step Drill: A Feasibility Study
,”
Int. J. Adv. Manuf. Technol.
,
87
(
9–12
), pp.
2809
2819
.
40.
Wang
,
J.
,
Feng
,
P.
,
Zheng
,
J.
, and
Zhang
,
J.
,
2016
, “
Improving Hole Exit Quality in Rotary Ultrasonic Machining of Ceramic Matrix Composites Using a Compound Step-Taper Drill
,”
Ceram. Int.
,
42
(
12
), pp.
13387
13394
.
41.
Wang
,
J.
,
Feng
,
P.
, and
Zhang
,
J.
,
2016
, “
Investigations on the Edge-Chipping Reduction in Rotary Ultrasonic Machining Using a Conical Drill
,”
Proc. Inst. Mech. Eng., Part B
,
230
(
7
), pp. 1254–1263.
42.
Cong
,
W. L.
,
Pei
,
Z. J.
,
Deines
,
T. W.
, and
Treadwell
,
C.
,
2011
, “
Rotary Ultrasonic Machining of CFRP Using Cold Air as Coolant: Feasible Regions
,”
J. Reinf. Plast. Compos.
,
30
(
10
), pp.
899
906
.
43.
Liu
,
J.
,
Zhang
,
D.
,
Qin
,
L.
, and
Yan
,
L.
,
2012
, “
Feasibility Study of the Rotary Ultrasonic Elliptical Machining of Carbon Fiber Reinforced Plastics (CFRP)
,”
Int. J. Mach. Tools Manuf.
,
53
(
1
), pp.
141
150
.
44.
Amini
,
S.
,
Soleimani
,
M.
,
Paktinat
,
H.
, and
Lotfi
,
M.
,
2017
, “
Effect of Longitudinal−Torsional Vibration in Ultrasonic-Assisted Drilling
,”
Mater. Manuf. Processes
,
32
(
6
), pp.
616
622
.
45.
Asami
,
T.
, and
Miura
,
H.
,
2015
, “
Study of Ultrasonic Machining Using Longitudinal and Torsional Vibration
,”
IEEE International Ultrasonics Symposium
(
IUS
), Taipei, Taiwan, Oct. 21–24, pp.
1
4
.
46.
Cardoni
,
A.
,
Harkness
,
P.
, and
Lucas
,
M.
,
2010
, “
Ultrasonic Rock Sampling Using Longitudinal-Torsional Vibrations
,”
Phys. Proc.
,
3
(
1
), pp.
125
134
.
47.
Suzuki
,
K.
,
Tochinai
,
H.
,
Uematsu
,
T.
,
Mishiro
,
S.
, and
Nakagawa
,
T.
,
1993
, “
A New Grinding Method for Ceramics Using a Biaxially Vibrated Nonrotational Ultrasonic Tool
,”
CIRP Ann.-Manuf. Technol.
,
42
(
1
), pp.
375
378
.
48.
Wang
,
J.
,
Feng
,
P.
, and
Zhang
,
J.
,
2017
, “
Experimental Investigation on the Effects of Thermomechanical Loading on the Vibrational Stability During Rotary Ultrasonic Machining
,”
Mach. Sci. Technol.
,
21
(
2
), pp. 239–256.
49.
Lv
,
D.
,
Zhang
,
Y.
, and
Peng
,
Y.
,
2016
, “
High-Frequency Vibration Effects on Hole Entrance Chipping in Rotary Ultrasonic Drilling of BK7 Glass
,”
Ultrasonics
,
72
, pp.
47
56
.
50.
Jiao
,
F.
,
2008
, “
The
Theoretical and Experimental Studies on Ultrasonic Aided High Efficiency Lapping With Solid Abrasive of Engineering Ceramic,” Ph.D. thesis, Shanghai Jiao Tong University, Shanghai, China.
51.
Marshall
,
D. B.
, and
Abdalla
,
H. S.
,
1980
, “Elastic/Plastic Indentation Damage in Ceramics: The Mediad Radial Crack System,”
J. Am. Ceram. Soc.
,
63
(
9–10
), pp. 574–581.
52.
Nath
,
C.
,
Lim
,
G. C.
, and
Zheng
,
H. Y.
,
2012
, “
Influence of the Material Removal Mechanisms on Hole Integrity in Ultrasonic Machining of Structural Ceramics
,”
Ultrasonics
,
52
(
5
), pp.
605
613
.
You do not currently have access to this content.